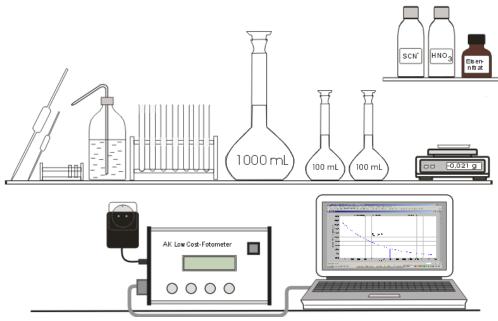
Arbeitskreis Kappenberg Computer im Chemieunterricht


# Bestimmung des Eisenionengehaltes mit Rhodanid-Lösung

I 05 Fotometrie

Prinzip:

Aus einer Verdünnungsreihe von Eisen(III)-nitratlösung lässt sich eine Eichkurve erstellen mit deren Hilfe man fotometrisch den Anteil des Eisens in einer Probe bestimmen kann .

#### Versuchsaufbau:



#### Materialliste:

1

1

## Geräte:

Fotometer FM 04 Uhrglas 1 Netzteil dazu 1 Trichter

1 Computer serielles Verbindungskabel 1

1 7 Reagenzgläser

2 Küvetten 1 Reagenzglasgestell

Waage (mind.:200g/0.01g)

1 Messkolben, 1000 mL

Messkolben, 100 mL

Pipette, 10 mL 1

Pipette, 1 mL 1

1 Pipettierhilfe

Spatel

## Chemikalien:

Eisen(III)-nitrat SCN<sup>-</sup> Lösung 0,5 mol/L

(4.86g KSCN in 100 mL dest . Wasser)

Salpetersäure, c = 0.5 mol/L

dest. Wasser

# Vorbereitung des Versuchs:

- 1. Herstellen der Stammlösung:
- Genau 4,04 g Eisen(III)-nitrat · H<sub>2</sub>O abwiegen, in einen 1000 mL Messkolben überführen und mit dest. Wasser auffüllen.
- 10 mL dieser Lösung auf 100 mL im Messkolben verdünnen. Nun liegt eine Eisensalzlösung (c= 0,001 mol/L) vor.
- 2. Herstellen der Verdünnungsreihe ( in Reagenzgläsern wie in der Tabelle vorgegeben)

| Reagenzglas:                      | Α | В   | С | D   | Е | F   | G | Einheit |
|-----------------------------------|---|-----|---|-----|---|-----|---|---------|
| Fe <sup>3+</sup> - Lösung         | 0 | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 | mL      |
| 0,5 m HNO <sub>3</sub>            | 9 | 8,5 | 8 | 7,5 | 7 | 6,5 | 6 | mL      |
| SCN⁻ - Lösung                     | 1 | 1   | 1 | 1   | 1 | 1   | 1 | mL      |
| Konzentration an Fe <sup>3+</sup> |   |     |   |     |   |     |   | μmol/L  |
| Transmission·                     |   |     |   |     |   |     |   | %       |
| Extinktion ·                      |   |     |   |     |   |     |   |         |

- Das Fotometer wird nach Anleitung aufgebaut, an den Computer angeschlossen und angestellt.

### Computerprogramm: AK Analytik 32.NET (→ Schnellstarter → AK LowCost Fotometer FM04)

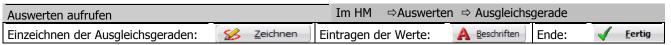
- Unter dem Bild des Fotometers alle Anweisungen durch Klick auf die Kästchen bestätigen und wählen:

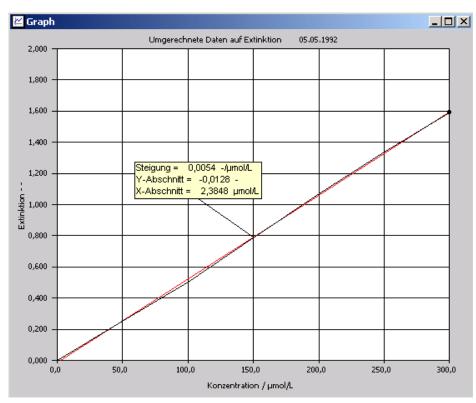
| Angezeigte Messgröße    | Angezeigte Messgröße: Extinktion |       |       | Einheit -       |                  |                 |                      |         |
|-------------------------|----------------------------------|-------|-------|-----------------|------------------|-----------------|----------------------|---------|
| Farbe                   | Gelb                             | Gelb  |       | Dann noch:      | Nullabgleich     |                 |                      |         |
| Für Grafik              | 0 -                              | 100 % | Bei I | Konz.intervall: | <b>0,2</b> mol/L | Ges             | amtkonz:(für Grafik) | 1 mol/L |
| Messung auf Tastendruck |                                  |       |       |                 | Dir              | ekt zur Messung |                      |         |

Arbeitskreis Kappenberg Computer im Chemieunterricht

# Bestimmung des Eisenionengehaltes

**I 05** Seite 2 / 2


## Durchführung des Versuches:


- Die Küvette mit destilliertem Wasser in den Lichtschacht stellen und zur Messwertübernahme mit der Maus auf den Button drücken.
- Nacheinander die Küvetten mit aufsteigender Konzentration in das Fotometer stellen und ebenfalls den Messwert übernehmen.
- Schließlich die Küvette mit der Messingprobe einstellen, den Wert ablesen und aufschreiben nicht speichern!
- Beenden mit Klick auf <a href="Messung beenden">Messung beenden</a> oder mit der Taste <a href="Esc">Esc</a>.

Achtung: Vor dem Speichern unten auf die Achsenbeschriftung klicken und die Einheit von mol/L in µmol/L ändern.

#### Auswertung des Versuches:

#### Ermittlung des Extinktionskoeffizienten





Wir erhalten in guter Näherung eine Ursprungsgerade, die dem Gesetzes von Lambert-Beer gehorcht:  $E = \varepsilon * c$ 

Der Extinktionskoeffizient 
$$\varepsilon$$
 ist die Steigung: 0,0054  $\frac{1}{\mu mol}$  = 0,0054 L/ $\mu$ mol

**Achtung:** Der Extinktionskoeffizient muss noch in L/mol umgerechnet werden  $\varepsilon = 0.0054 \text{ L} \cdot \mu \text{mol}^{-1}/10^{-6} = 5400 \text{ L/mol}$ 

## Bestimmung des Eisenionenanteils in einer Probe:

- Zu 9 mL einer salpetersauren Probenlösung 1 mL SCN<sup>-</sup>-Lösung geben und wie oben messen.
- Zum Messwert XXX im Graphen den zugehörigen y-Wert ermitteln oder den Messwert durch den Extinktionskoeffizienten teilen.

Literatur: R. Nagel, Photometrische Analysen im Unterricht, Phywe, Göttingen 1976

F. Kappenberg, Computer im Chemieunterricht 1988, S. 175, Verlag Dr. Flad, Stuttgart