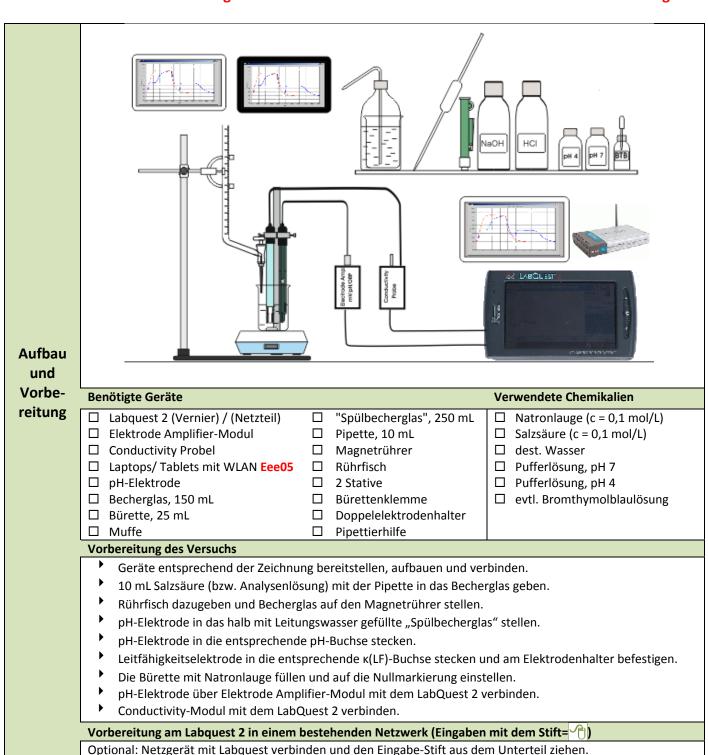


Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

N 02A 5.3 Vernier LabQuest 2


2-Kanalmessung (normale Bürette)

Prinzip

Da sich bei der Neutralisation die Leitfähigkeit und der pH-Wert ändern, kann man die Titration sowohl konduktometrisch wie auch potenziometrisch verfolgen.

Mit dem LabQuest 2 (Vernier) hat man die Möglichkeit, Leitfähigkeit und pH-Wert gleichzeitig aufzunehmen. Über ein bestehendes WLAN-Netz können die Schüler die Messung auf Ihrem eigenen Tablet verfolgen und auswerten.

Versuch als 2-Kanal Messung nicht durchführbar: Die Module besitzen keine Potentialtrennung

06/2014 www.kappenberg.com Materialien Vergleich Messsysteme

al und elektrische Leitfähigkeit an.

Labquest 2 einschalten (Schalter auf der Oberseite links). Bootphase abwarten. Der Bildschirm zeigt Potenzi-

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

N 02A

5.3 Vernier LabQuest 2

2-Kanalmessung (normale Bürette)

Auf rechtem Gehäuserand die mittlere Taste Home , Verbindungen WiFi an, daneben Zahnrad
Rappi-Home Passphrase 5X00 , Wichtig: IP-Adresse z.B. 192.168.0.173 auch QR-Code
Home , LabQuest App (Falls die Messwertanzeigen nicht sichtbar: ganz links oben Messskala)
Auf die Digitalanzeige des Potentials Einheiten ändern pH
Oben Rechts im Display Betriebsart neben "Zeit basiert" Ausgewählte Ereignisse
Name Volumen Einheit mL OK
Kalibrieren
auf Sensoren auf Kalibrieren auf Elektrodensignalverstärker auf Jetzt kalibrieren
► Elektrode in Pufferlösung pH = 7 stellen - Bei Wert 1 und warten bis die angezeigte Spannung kon-
stant ist. Dann Festhalten
Elektrode in Pufferlösung pH = 4 stellen - Bei Wert 2 6 4 und warten bis die angezeigte Spannung kon-
stant ist. Dann Festhalten OK OK
Oben rechts auf Icon Graph Micken. Es erscheinen zwei Koordinatensysteme. In der Leiste oben
"Graph" 👚 anwählen, Graphoptionen 👚
und "Spalte x-Achse" Volumen Links 0 Fertig Rechts 40 Fertig
Unter "y-Achse Graph 1" oben w 14 Fertig , unten 0 Fertig
Häkchen bei Punkte verbinden und unter Lauf 1 nur bei PH.
Unter " y-Achse Graph 2" oben 5000 Fertig , unten 0 Fertig (evtl. "Schieber" beachten!)
Häkchen bei Punkte verbinden und unter Lauf 1 nur bei I Elektrische Leitfähigkeit und OK ↑

Vorbereitung an den anderen Computern / Tablets (Clients)

- Am Laptop / Tablet Netzwerk mit dem bestehenden Netzwerk eine WLAN Verbindung herstellen. Home Netzwerk anwählen und warten bis die Verbindung hergestellt ist.
- Browser z.B. FireFox aufrufen und in die Adresszeile (URL-Zeile) [60] 192.168.0.173 eingeben.
- Falls man später am Tablet auswerten will

pH-Elektrode am Stativ befestigen. Rührfisch darf beim Drehen die Elektroden nicht berühren.

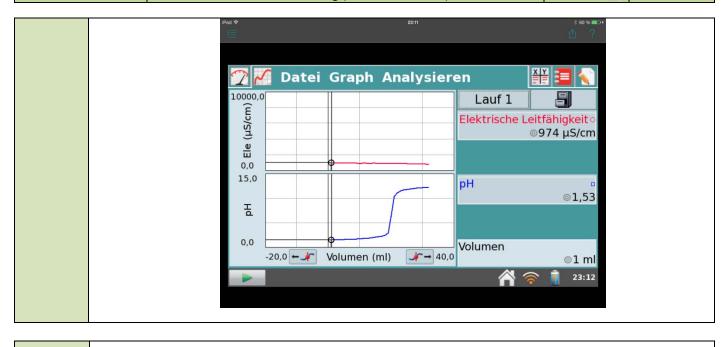
- So viel dest. Wasser zugeben, dass die Pt-Bleche der LF-Elektrode gut bedeckt sind.
- Die Messwertaufnahme bei 0,0 mit Grüner Pfeil of links unten starten und den Messwert mit dem Icon rechts daneben Rosettensymbol speichern.
- Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL und Messwert jeweils mit Rosettensymbol of speichern.
- Zum Beenden Rotes Quadrat links unten drücken.

Durchführung

Volumen umrechnen Testen!!

Icon "Tabelle" anklicken, oben Wort "Tabelle" anklicken, "Neue berechnete Spalte" auswählen, bei Name "Volumen" eingeben, bei Einheiten "mL" eingeben, bei Gleichung Typ: AX+B wählen, bei Spalte für X: Volumen auswählen, für A 0,5 eingeben, für B -0,5 eingeben und mit OK bestätigen. Den Hinweis "Spaltenname wird gerade verwendet. Wollen Sie diesen Namen erneut verwenden" mit "Ja" beantworten

www.kappenberg.com Materialien Vergleich Messsysteme 06/2014 2



Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

5.3 Vernier LabQuest 2

2-Kanalmessung (normale Bürette)

Speichern

- Zum Speichern oben im Menü Datei Speichern 🖑
- Projektnamen eingeben statt "unbenannt" (hier: Beispiel) M02a-5-3-user und Speichern

Öffnen bei **Bedarf**

LabQuest 2 anstellen. Bootphase abwarten. Zum Dateiladen oben im Menü Datei Öffnen 🖑, entsprechende Datei auswählen und Öffnen

Ansehen am Client

Client Speichern

- Experiment speichern , Projektname eingeben (hier: Beispiel) | MO2a-2-1-user und Experiment speichern
- Es öffnet sich ein Fenster "N05-2-1user. exp". Datei speichern " und OK " Darauf achten, dass kein Popup-Blocker das Speichern verhindert.

Client Excel-**Export** Experiment speichern , Projektname eingeben (hier: Beispiel) M02a-2-1-user und Als CSV speichern . Es öffnet sich ein Fenster ""Mein erstes Projekt.csv"

Direkt in Excel Öffnen: Offnen mit 'Microsoft Office Excel (Standard)' OK

Als Datei Speichern: OK The Datei Speichern OK

Öffnen bei **Bedarf**

- . Browser z.B. FireFox 🕆 🕆 aufrufen und in die Adresszeile (URL-Zeile) 📻 192.168.0.173 eingeben.
 - Menüzeile On-Line Experiment offnen und in Fenster "Datei hochladen" Su-

06/2014 www.kappenberg.com Materialien Vergleich Messsysteme

Prinzip:

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

THE PROPERTY OF THE PROPERTY O

N 02A

5.3 Vernier LabQuest 2

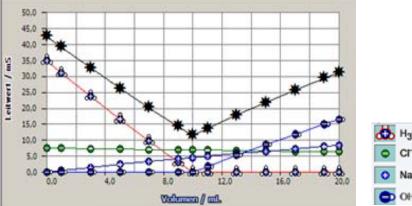
2-Kanalmessung (normale Bürette)

Neutralisationstitration - Theorie

Die Neutralisationsreaktion verläuft nach folgender Gleichung:

$$1 H_3O^+(aq) + 1 Cl^-(aq) + 1 Na^+(aq) + 1 OH^-(aq) \rightarrow 2 H_2O(l) + 1 Na^+(aq) + 1 Cl^-(aq)$$
Salzsäure

Natronlauge

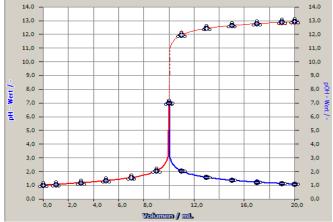

Wasser

Salz

Es reagieren eigentlich nur die schon vorliegenden Oxoniumionen mit den zugetropften Hydroxidionen

1. Betrachtung der elektrischen Leitfähigkeit

Hier ist der Leitwert (elektrische Leitfähigkeit = einzig meßbarer Wert) als Summe der Einzelleitwerte von Oxonium-, Chlorid-, Natrium- und Hydroxidionen gegen das Titratorvolumen aufgetragen. Man erkennt, wie fast nur die sehr schnellen H₃O⁺-lonen (rot) und die ebenfalls schnellen OH⁻-lonen (blau) den Leitwert beeinflussen.


Die **Leitfähigkeit** fällt zunächst, weil die schnellen H₃O⁺ -lonen durch langsamere Na⁺ -lonen "ersetzt" werden. Nach dem Äquivalenzpunkt steigt die Leitfähigkeit durch die etwas weniger beweglichen OH⁻-lonen wieder an.

Der Äquivalenzpunkt ergibt sich aus dem Schnittpunkt der beiden Regressionsgeraden der zwei Phasen.

2. Betrachtung des pH-Wertes

Wir benutzen dieselben Konzentrationen wie oben und wählen nur eine andere Darstellung im Graphen:

- 1. Es werden nur noch die H₃O⁺- und die OH⁻-lonen betrachtet.
- 2. Auf der y Achse wird statt Leitwert der negative dekadische Logarithmus der Oxonium-/Hydoxid- Ionenkonzentrationen pH = $-\log(c(H_3O^+))$ gegen das Titratorvolumen aufgetragen.
- 3. Im oberen Graphen ist im Äquivalenzpunkt die Konzentration der Oxoniumionen durch die Titration (fast) $c(H_3O^+) = 0$ mol/L Aber man kann noch einen pH-Wert messen: er beträgt: 7
- 3. Ab dem Äquivalenzpunkt erhöht sich die Hydroxidionenkonzentration c(OH⁻). Daraus wird der pH-Wert berechnet: pH= 14 pOH.

Zu Beginn ist der **pH- Wert** ist sehr niedrig, da die Chlorwasserstoffsäure vollständig dissoziiert ist. Im Laufe der Titration werden die Oxoniumionen durch die Hydroxidionen neutralisiert. In der Nähe des Äquivalenzpunktes aber steigt der pH-Wert bei weiterer Zugabe der Hydroxidionen sprunghaft an. Am Ende der Titration ist die Steigung wieder gering. Daher bietet sich hier die "3 Geradenmethode" als Auswertemethode an.

www.kappenberg.com | Materialien | Vergleich Messsysteme | 06/2014 | 4

Start Labquest

Konduktometrische und potenziometrische Titration von Salzsäure mit Natronlauge

5.3 Vernier LabQuest 2

2-Kanalmessung (normale Bürette)

	Browser z.B. FireFox aufrufen und in die Adresszeile (URL-Zeile) [192.168.0.173] eingeben.
	Auswertung
	Mit Links in den rechten Rand den linearen Bereichs und mit Links gedrückt nach links hin den
	gewünschten Absteigenden Bereich markieren
	In den Bereich Links Linear und Done .
	Von der Gleichung y= mx+b werden m und b ausgegeben.
	Zu Fuß die Werte m und b als m1 und b1 notieren
	Mit Links in den rechten Rand den linearen Bereichs und mit Links gedrückt nach links hin den
	gewünschten aufsteigenden Bereich markieren
	In den Bereich Linear und Done und Done
	Zu Fuß die Werte m und b als m2 und b2 notieren
	Zu Fuß den Schnittpunkt berechnen: EZ = (b1-b2) / (m2-m1)
Aus-	
wertung	
an den	
Clients	
	Einmal gespeicherte Einstellungen können für eine sofortige neue Messung benutzt werden.
	Labquest einschalten (Schalter oben drauf links). Bootphase abwarten. Bootphase abwarten. Der-Bildschirm
Quick-	zeigt beide Temperaturen an.
Quick-	ן בפוצג אכועכ דכווואכומנעולוו מוו.

Zeitbedarf		Aufbau		Vorber.		Durch-		Auswer-		Ab-		Intuitive Be-	
Minuten		(Exp):		Rechn.		führ.		tung		bau		dienung (+1-6)	
			,			,							
Beachten:						Ent	sorgung	Ausguss evtl. nach Neutralisation					

Mit Grüner Pfeil Inks unten Messwertspeicherung starten "alte Daten" Verwerfen

Oben "Datei" Offnen Odie Datei N02a-5-3-QS.qmbl Offnen Offnen

Weiter, wie bei *Durchführung* beschrieben.

Literatur F. Kappenberg; Computer im Chemieunterricht 1988, S. 142, Verlag Dr. Flad, Stuttgart

www.kappenberg.comMaterialienVergleich Messsysteme06/20145