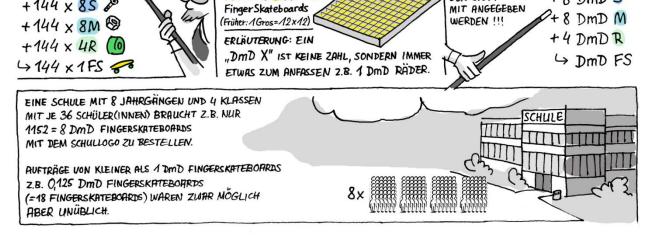


Mol & Co Chemische Geheimrechnungen dechiffrieren

LASST UNS ZUNÄCHST UNTERSUCHEN, WELCHE TEILE WIR ÜBERHAUPT FÜR DIE FINGERSKATEBOARDS BENÖTIGEN!

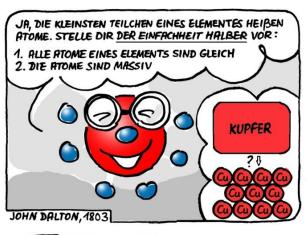
BRETTER
+ ACHSEN
+ SCHRAUBEN
+ MUTTERN
+ RÄDER


DIE BESTEHEN ZWAR
NOCH RUS EINZELTEILEN DOCH SIE HRBEN ANDERE
EIGENSCHAFTEN:
SIE ROLLEN UND MAN
KANN MIT IHNEN SKATEN.
MIT DEN TEILEN OBERHALB
VOM PFEIL GEHT DAS NICHT.

4 FINGERSKATEBOARDS

LASST UNS DANN
UNTERSUCHEN, WIE
<u>VIELE TEILE</u> WIR FÜR
DIE KLEINSTE EINHEIT=
I FINGERSKATEBOARD
BENÖTIGEN!

Mol & Co Chemische Geheimrechnungen dechiffrieren



JR CHEMIKUS, DAS IST AUCH NICHT SO EINFACH.
DU GLAUBST, DEINE KUPFERPORTION WÄRE MASSIV.
STELL DIR DAS SO VOR: DU TEILST DAS KUPFERBLECH IN
ZWEI TEILE. DANN NIMMST DU WIEDER EINE HÄLFTE UND
TEILST SIE UND SO WEITER UND SO WEITER.

IRGENDWANN KANNST DU MIT "PINZETTE+SKALPELL"
NICHT MEHR TEILEN. DANN TEILST DU ABER IN GEDRNKEN
WEITER, BIS DU ZU SO KLEINEN TEILCHEN KOMMST,
DIE NICHT MEHR TEILBAR SIND.

Mol & Co Chemische Geheimrechnungen dechiffrieren



MOLARE MRSSE VON
ROTEM KUPFEROXID Cu₂0
BERECHNET SICH SO:
M(Cu₂0)=2×M(Cu)+M(0)
=2×63,5g/mol+16g/mol
=143g/mol
DARIN SIND
1 NA KUPFEROXID TEILCHEN,

DIE BESTEHEN AUS 2 Na KUPFERATOMEN (=127g) 1 Na SAUERSTOFFATOMEN (=16g) MRSSE M(CuO)=(63,5+16)g/mol=79,5g/mol

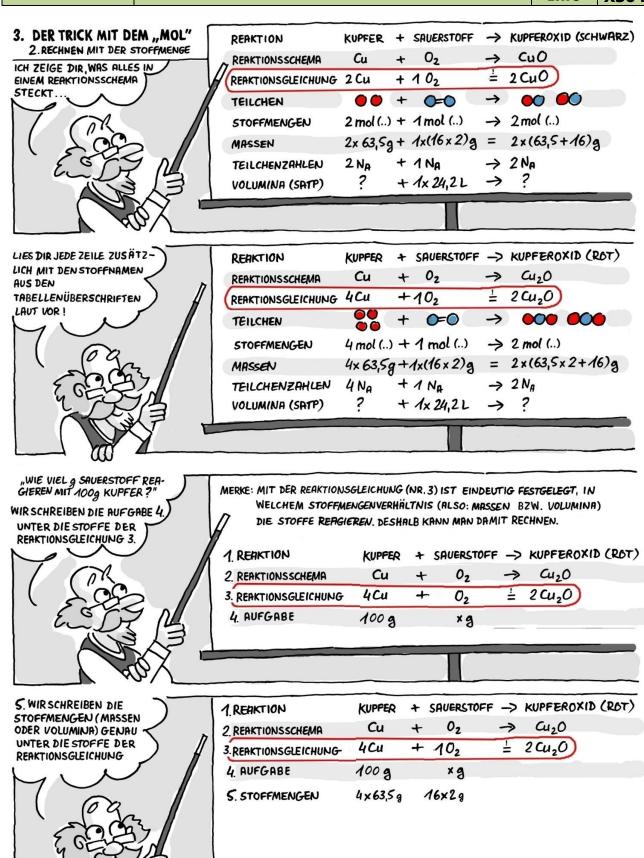
DARIN SIND

1 NA KUPFEROXID TEILCHEN,
DIE BESTEHEN AUS

1 NA KUPFERATOMEN

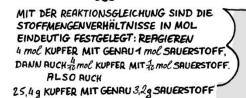
1 NA SRUERSTOFFATOMEN

DANN HAT SCHWARZES KUPFEROXID DIE MOLARE

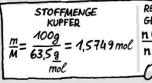


Kappenberg

Mol & Co Chemische Geheimrechnungen dechiffrieren



Info



1. REAKTION	KUPPER	+	SAUERSTOFF	→	KUPFEROXID (ROT)
2 REAKTIONS SCHEMA	Cu	+	02	->	Cu ₂ O
3. REAKTIONS GLEICHUNG	4Cu	+	102	<u>!</u>	2 Cu ₂ O
4. AUFGABE	100 g		×g		
6	4×63.5 a	= -	16×29		

DAHER KANN MAN LEICHT AUSRECHNEN. WIE VIEL & SAVERSTOFF Z.B. MIT 1000 KUPFER REAGIEREN, WENN MAN MIT DEN STOFFMENGEN-(MOLAREN) VERHÄLTNISSEN AUS DER REAKTIONSGLEICHUNG RECHNET:

REAKTIONS. STOFFMENGE GLEICHUNG: SAUERSTOFF $n(Cu)_4$ n(O2) -1 4

SAUERSTOFF 1,5749 mol=0,3937 mol 0,3937 mol ×329=12,598g

MASSE

REAKTION	WASSERSTOFF	+	SAUERSTOF	\rightarrow	Wasser	
REAKTIONSSCHEMA	Hz	+	02	>	H20	
REAKTIONSGLEICHUNG	g 2 H ₂	+	102	<u> </u>	2H ₂ O)	
TEILCHEN	999	+	0=0	-	000	
STOFFMENGEN	2mol ()	+	1 mol ()	\rightarrow	2 mol ()	
MASSEN	2x(1x2)g	+	1x(16 x 2)	g=	2x (1x2+	16)g
TEILCHENZAHLEN	2 NA	ł	1 NA	\rightarrow	2 NA	
VOLUMINA (SATP)	2x 24,2 L	+	1x 24,2L	\rightarrow	(2 × 24,2 L	gasförm.)
DmD's	2 DmD ()	+	1 DmD ()	->	2 DmD ()	
BAUSTEINMODELL		+	COCO	7		200

