
Alkalische Verseifung von Ethansäureethylester

Prinzip

Bei der alkalischen Verseifung von Ethansäureethylester werden Hydroxidionen durch Acetationen ersetzt. Daher kann die Reaktion mit Hilfe der Leitfähigkeitsmessung verfolgt werden.

Alkalische Verseifung von Ethansäureethylester

1. Bestimmung der zeitunabhängigen Leitfähigkeiten:

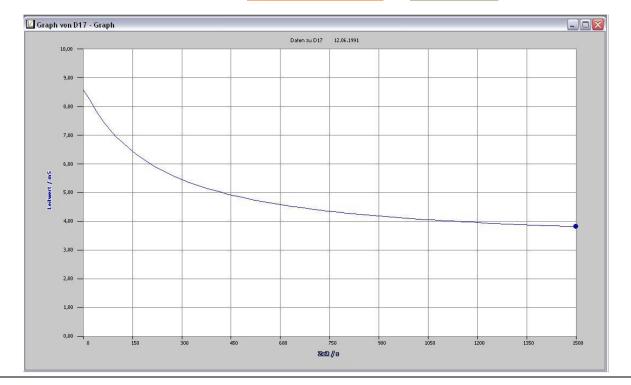
a) Natriumacetatlösung (c = 0,05 mol/L) wird durch Verdünnen (1:1) der Lösung mit c = 0,1 mol/L hergestellt. Nach gründlichem Spülen (möglichst mit der Natriumacetatlösung) wird die Elektrode in das Becherglas getaucht, die elektrische Leitfähigkeit gemessen und notiert.

$$\kappa$$
 (NaAc; c = 0,05 mol/L): mS/cm

b) Natriumhydroxidlösung (c = 0,5 mol/L) wird durch Verdünnen (1:1) der Lösung mit c = 0,1 mol/L hergestellt. Nach gründlichem Spülen (möglichst mit der Natriumhydroxidlösung) wird die Elektrode in das Becherglas getaucht, elektrische Leitfähigkeit gemessen und notiert.

$$\kappa$$
 (NaOH; c = 0,05 mol/L): mS/cm

2. Verfolgung der Reaktion


- Mit Hilfe des Messzylinders 40 mL Ethanäureethylesterlösung (c = 0,1 mol/L) im 100 mL Becherglas vorlegen, die Elektrode eintauchen und befestigen.
- 40 mL Natronlauge (c = 0,1 mol/L) zugießen.
- Gleichzeitig mit Aufzeichnen oder mit der 's'-Taste die Messwertspeicherung starten.
- Nach ca. 1500 s den Versuch Messung beenden heenden.

Da der erste Messpunkt durch die Turbulenzen beim Zusammengeben der Lösungen sicher nicht richtig ist, wird er korrigiert und durch κ(NaOH) ersetzt.

Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen

Bei dem y-Wert vom Wertepaar Nr. 1 🚋 κ(NaOH)

Projektnamen eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren

Alkalische Verseifung von Ethansäureethylester

Ethansäureethylester wird mit Natronlauge im Stoffmengenverhältnis 1:1 umgesetzt:

$$CH_3COOC_2H_5 + Na^+ + OH^- \rightleftharpoons CH_3COO^- + Na^+ + C_2H_5OH$$

Achtung: Beim Mischen verdünnen sich die beiden Lösungen jeweils auf die halbe Konzentration. Da bei sonst gleichbleibender Ionenkonzentration nur die schnelleren Hydroxid- durch langsame Acetationen ersetzt werden, lässt sich diese Reaktion über die Messung der elektrischen Leitfähigkeit gut verfolgen.

Die Berechnung der Konzentration der OH⁻- Ionen erfolgt nach folgender Gleichung:

Auswertung

$$c(OH^{-}) = \frac{\kappa - \kappa(NaAc)}{\kappa(NaOH) - \kappa(NaAc)} \cdot c(NaOH_{Start})$$

Hierin ist κ (NaOH) der Leitfähigkeit einer reinen Hydroxidlösung (Start der Reaktion) und κ (NaAc) die Leitfähigkeit einer vollständig verseiften Lösung (Ende der Reaktion).

Berechnung der Konzentration an Hydroxidionen (Essigsäureethylester)

Die Berechnung erfolgt nach obiger Gleichung.

Beispielwerte: $\kappa(NaAc)$ = 3.16 mS, $\kappa(NaOH)$ = 8.57 mS, c(NaOH_{Start}) = 0.05 mol/L

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Daten umrechnen Umrechnen mit einzugebender Funktion Eigene Funktion einzugeben
- (YA-3.16)/(.57-3.16)*0,05 ? OK ♥
- Klick auf das Farbpalettensymbol
- y- Obergrenze: o,05 y-Messgröße: Konzentration Einheit mol/L y- Untergrenze: o0 Akzeptieren /
- Akzeptieren 🖺 Neue Datenreihe In aktuellen Graphen einzeichnen
- Projektnamen eingeben (hier: Beispiel) Esterverseifung und Akzeptieren

Das ist die Ausgangsdatenreihe für die Auswertungen .

Bestimmung der Reaktionsordnung: 1. Vorschlag: "Automatik für Kinetik" Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Automatik für Kinetik ок 🤚 Der Rechner gibt die Summe der Fehlerquadrate an. Der kleinste Wert ist hier bei 2.Ordnung Zeichnen und Beschriften (evtl. Position ändern) und Fertig Neue Datenreihe In aktuellen Graphen einzeichnen Akzeptieren 🖺 **≝** Graph _| | | | | | | 0.0350 등 ^{0,0300} .§ 0,0250 0.0150 0,0100 Test für eine Reaktion erster Ordnung:

Der Punkt "Ein Viertel der Ausgangskonzentration" - "doppelte Halbwertszeit" liegt nicht auf dem Graphen)

Alkalische Verseifung von Ethansäureethylester

Auswertung nach Reaktion 1. Ordnung

Auswertung nach Reaktion 1. Ordnung

Durch Integration der Geschwindigkeitsgleichung für die Reaktion erster Ordnung (vorige Seite) erhält man

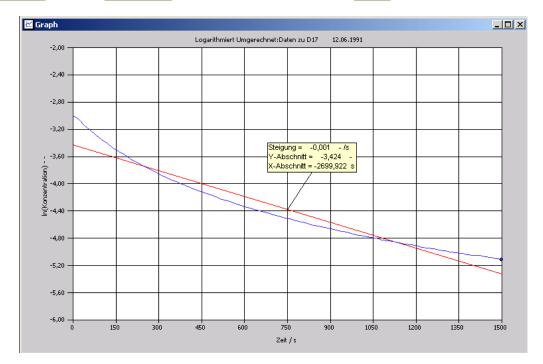
$$c_t = c_0 \cdot e$$

das bedeutet, bei Reaktionen erster Ordnung nimmt die Konzentration des Edukts exponentiell mit der Zeit ab. Logarithmiert man die Gleichung (6), so erhält man.:

$$\ln c_t = \ln c_0 - k_1 \cdot t$$

Trägt man In c gegen t auf, so muss sich eine Gerade ergeben:

Ausgangsdatereihe ist die Datenreihe mit der Konzentration – sie muss geladen und gewählt sein sein.


Vorschläge

- Umrechnen mit einzugebender Funktion Kinetik: Logarithmieren der y-Werte OK
- Neue Datenreihe In neuen Graphen einzeichnen

 Akzeptieren

 Zeichnen und Beschriften (evtl. Position ändern) und Fertig

Der Korrelationskoeffizienten (-0.970) zeigt eine relativ große Abweichung und bestätigt das, was der Graph zeigt: Keine Reaktion erster Ordnung

Alkalische Verseifung von Ethansäureethylester

Auswertung nach Reaktion 2. Ordnung

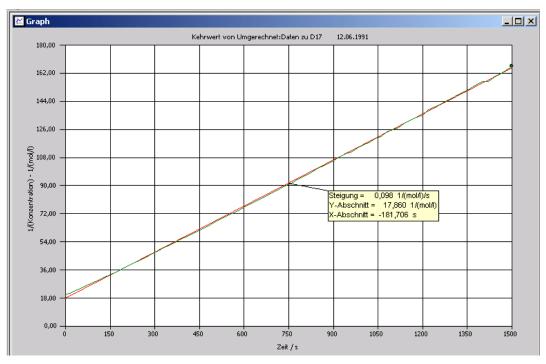
Die Geschwindigkeitsgleichung für eine Reaktion zweiter Ordnung lautet:

$$v = - \frac{dc}{dt} = k_2 \cdot c^2$$

Durch Integration der Gleichung erhält man

$$\begin{array}{ccc} c_0 \\ & ---- \\ c_t \end{array} = k_2 \cdot c_0 \cdot t + 1$$

Formt man die Gleichung um, so erhält man:


$$\begin{array}{ccc}
1 & & 1 \\
--- & = k_2 \cdot t + --- \\
c_t & & c_0
\end{array}$$

Trägt man 1/c (y-Achse) gegen t (x-Achse) auf, müsste es bei Vorliegen einer Reaktion zweiter Ordnung eine Gerade ergeben. Man zeichnet eine Ausgleichsgerade und ermittelt die Steigung dieser Geraden.

Ausgangsdatenreihe ist die Datenreihe mit der Konzentration – sie muss gewählt sein.

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Daten umrechnen
- Neue Datenreihe In neuen Graphen einzeichnen

 Akzeptieren
- Zeichnen dund Beschriften devtl. Position ändern) und Fertig

Der Korrelationskoeffizient (1.00) bestätigt die Reaktion 2. Ordnung.

Beachten: 📵 🕟 🕸 🕩

Entsorgung Organische Lösungsmittel

Literatur L. Strohmeyer, Verlauf chemischer Reaktionen, S. 23 ff, Schwann Verlag Düsseldorf 1978