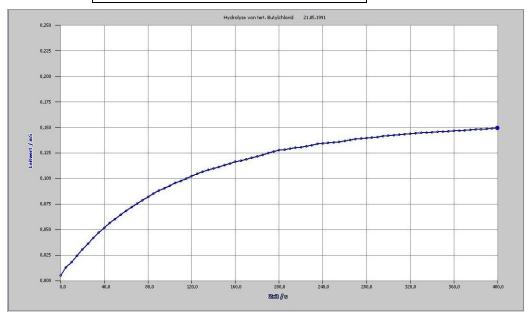


Prinzip

Die Hydrolyse von tert. Butylchlorid in wässriger Lösung kann mit Hilfe der Leitfähigkeitsmessung verfolgt werden, da dabei Oxonium- und Chloridionen entstehen. Der Versuch wird über einen gewissen Zeitraum verfolgt und die Daten unter reaktionskinetischen Gesichtspunkten ausgewertet.



-) D19
- Mit Hilfe der 1 mL Pipette 0,8 mL t-Butylchlorid Lösung in das Becherglas pipettieren
- Gleichzeitig mit Aufzeichnen oder mit der 's'-Taste die Messwertspeicherung starten.
- Nach ca. 400 s den Versuch Messung beenden beenden.
- Projektnamen eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren

Achtung: Man lässt die Probe noch etwa 30 Minuten lang stehen oder erwärmt sie vorsichtig auf etwa 40 - 50 °C und lässt sie dann auf die Ausgangstemperatur wieder abkühlen. Messen Sie dann erneut die Leitfähigkeit und notieren Sie diesen: Für die Rechnung benötigen Sie auch die Leitfähigkeit beim Start (evtl. aus der Tabelle)

Leitfähigkeit für t= ∞ : κ_∞ : mS/cm

Durchführung

Bei der Hydrolyse von tert. Butylchlorid entstehen tert. Butylalkohol und Salzsäure bzw. Oxoniumionen; d.h. die Leitfähigkeit steigt.

$$(CH_3)_3C-CI+2H_2O \rightarrow (CH_3)_3C-OH+H_3O^++CI^-$$

Aus der Leitfähigkeitszunahme, die auf die frei werdenden H₃O⁺- und Cl⁻- Ionen zurückzuführen ist, lässt sich die jeweilige Konzentration des tert. Butylchlorids (BC) nach folgender Gleichung berechnen

$$c(BC) = \frac{\kappa_{\infty} - \kappa}{\kappa_{\infty} - \kappa_{0}} \cdot c(BC_{Start})$$

Berechnung der Konzentration an tert. Butylchlorid:

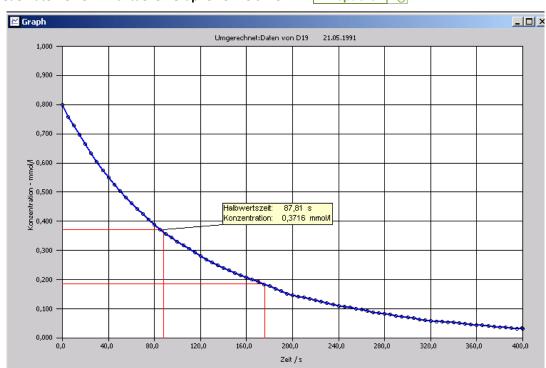
Beispielwerte: κ_0 = 0,005mS/cm , κ_∞ = 0,155 mS/cm, c(BC_{Start}) = 0,8 mol/L

Auswertung

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Daten umrechnen
- ► ☐ Umrechnen mit einzugebender Funktion ☐ Eigene Funktion einzugeben
- Klicken um Beispiel zu laden ((,155-YA)/(.155-0.005))*0.8 * OK
- Klick auf das Farbpalettensymbol
- y- Obergrenze: y-Messgröße: Konzentration Einheit mol/L y-Nachkomma: 3
- Akzeptieren Neue Datenreihe In aktuellen Graphen einzeichnen Akzeptieren
- Projekt → Speichern unter
- Projektnamen eingeben (hier: Beispiel) Marmor-Salzsäure und Akzeptieren

Das ist die Ausgangsdatenreihe für die Auswertungen .

Vorschläge zur Bestimmung der Reaktionsordnung (Automatik für Kinetik):


Ausgangsdatereihe ist die Datenreihe mit der Konzentration – sie muss geladen und gewählt sein sein.

- ► Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen weitere Ausw 1
- Automatik für Kinetik

 OK

 OK
 - Der Rechner gibt die Summe der Fehlerquadrate an. Der kleinste Wert ist hier bei 1.Ordnung
- Zeichnen und Beschriften (evtl. Position ändern) und Fertig
- Neue Datenreihe In aktuellen Graphen einzeichnen Akzeptieren

Auswertung

Sie erhalten als Zusatzinformation Angabe der Summe der Fehlerquadrate für die einzelnen Ordnungen. Dieser Wert muss möglichst klein sein. (Hier 1.Ordnung)

Test

Test: Beim doppelten Wert (hier: 2 x 87,8 s =175,6 s) muss die Hälfte der Hälfte reagiert haben, d.h. der Punkt für c/4 muss auf dem Graphen liegen.

Geschwindigkeitskonstante aus der Halbwertszeit: $k1 = ln(2) / t1/2 = 0,6931/87,81 s = 0,00789 s^{-1}$

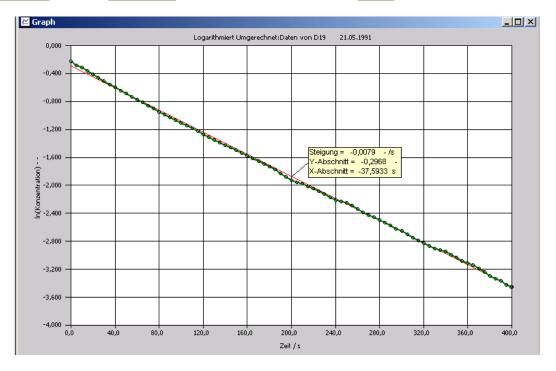
Auswertung nach Reaktion 1. Ordnung

Durch Integration der Geschwindigkeitsgleichung für die Reaktion erster Ordnung (vorige Seite) erhält man

$$c_t = c_0 \cdot e^{-k_1 \cdot t}$$

Das bedeutet, bei Reaktionen erster Ordnung nimmt die Konzentration des Edukts exponentiell mit der Zeit ab. Logarithmiert man die Gleichung, so erhält man.:

$$\ln c_t = \ln c_0 - k_1 \cdot t$$


Trägt man In c gegen t auf, so muss sich eine Gerade ergeben:

Ausgangsdatereihe ist die Datenreihe mit der Konzentration – sie muss geladen und gewählt sein.

- ► Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Daten umrechnen
- ► Umrechnen mit einzugebender Funktion
 ★ Kinetik: Logarithmieren der y-Werte
 OK ★
- Neue Datenreihe In neuen Graphen einzeichnen

 Akzeptieren
- Zeichnen und Beschriften (evtl. Position ändern) und Fertig

Die Geschwindigkeitskonstante entspricht der Steigung: $k_1 = m = 0.0079 \text{ s}^{-1}$

Sie können den recht guten Korrelationskoeffizienten (-0.9997) notieren.

Auswertung nach Reaktion 2. Ordnung

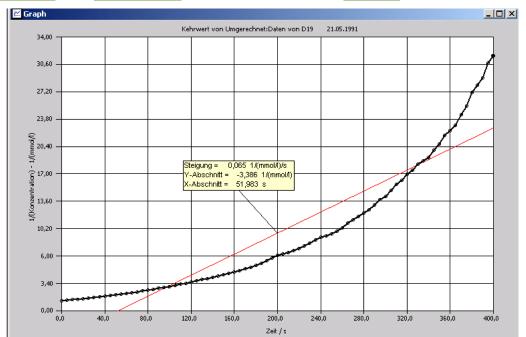
Die Geschwindigkeitsgleichung für eine Reaktion zweiter Ordnung lautet:

$$v = - \frac{dc}{dt} = k_2 \cdot c^2$$

Durch Integration der Gleichung erhält man

$$\begin{array}{ccc} c_0 \\ ---- \\ c_t \end{array} = k_2 \cdot c_0 \cdot t + 1$$

Formt man die Gleichung um, so erhält man:


$$\begin{array}{ccc}
1 & & 1 \\
& --- & = k_2 \cdot t + --- \\
c_t & & c_0
\end{array}$$

Trägt man 1/c (y-Achse) gegen t (x-Achse) auf, müsste es beim Vorliegen einer Reaktion zweiter Ordnung eine Gerade ergeben. Man zeichnet eine Ausgleichsgerade und ermittelt die Steigung dieser Geraden.

Ausgangsdatereihe ist die Datenreihe mit der Konzentration – sie muss gewählt sein.

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Daten umrechnen
- Neue Datenreihe In neuen Graphen einzeichnen

 Akzeptieren
- Zeichnen 🕆 und Beschriften 🔨 (evtl. Position ändern) und Fertig 🔨

Man kann am Korrelationskoeffizienten (0.931) sehen, dass eine Reaktion zweiter Ordnung ausscheidet.

Beachten:

Entsorgung

Organische Halogenierte Abfälle

Literatur F. Kappenberg; Computer im Chemieunterricht 1988, S. 144 Verlag Dr. Flad, Stuttgart

 www.kappenberg.com
 Materialien
 Versuche zur Konduktometrie
 10/2011
 5