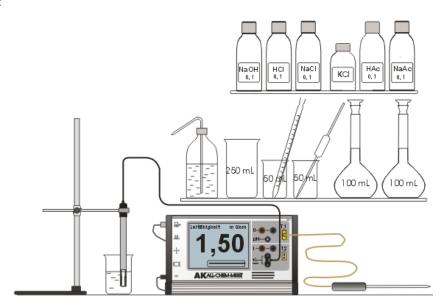
Arbeitskreis Kappenberg Computer im Chemieunterricht


# Bestimmung der Äquivalentleitfähigkeit von Säuren, Laugen und Salzlösungen

**D 03** Seite 1 / 7

Prinzip:

Es wird eine Verdünnungsreihe der jeweiligen Salzlösung hergestellt und von dieser die elektrische Leitfähigkeit gemessen.

#### Versuchsaufbau:



#### Materialliste:

#### Geräte:

1 ALL-CHEM-MISST II

1 Netzteil

evtl. Beamer mit Kabeln Computer / Laptop

1 LF - Elektrode

1 Temperaturfühler1 Becherglas, 250 mL

n Bechergläser, 50 mL

n Messkolben, 100 mL

1 Stativ

1 Muffe

1 Greifklemme, klein

1 Pipette, 10 mL

1 Pipette, 20 mL

1 Pipettierhilfe

#### Chemikalien:

HCI-Lösung (c=0.1mol/L) NaOH-Lösung (c=0.1mol/L) NaCI-Lösung (c=0.1mol/L)

NaAc-Lösung (c=0.1mol/L)

HAc-Lösung (c=0.1mol/L)

dest. Wasser KCI, p.a.

#### Vorbereitung des Versuchs:

- Die Geräte entsprechend der Zeichnung bereitstellen.
- Die Leitfähigkeitsmesszelle in ein mit etwa 150 mL dest. Wasser gefülltes 250 mL Becherglas stellen.
- Sie wird auch zwischen den Messungen hier aufbewahrt.
- Die Bananenstecker der LF- Elektrode in die entsprechende LF Buchse am ALL-CHEM-MISST II stecken.
- Das Stativ zur Erleichterung des Probenwechsels "falsch herum" hinstellen.
- Zur Temperaturkontrolle den Temperaturfühler in die Buchse T1 stecken.

#### Herstellen der Messlösungen

Von den in der Tabelle aufgeführten Ausgangslösungen (c = 0.1 mol/L) werden die angegebenen Volumina entnommen, im 100 mL Messkolben bis zur Marke aufgefüllt und geschüttelt.

|                |               |            | Leitwert    |             |             |            |  |  |  |
|----------------|---------------|------------|-------------|-------------|-------------|------------|--|--|--|
| Volumen Lsg.   | neue          | HCI - Lsg. | NaOH - Lsg. | NaCl - Lsg. | NaAc - Lsg. | HAc - Lsg. |  |  |  |
| (c=0,1  mol/L) | Konzentration |            |             |             |             |            |  |  |  |
| mL             | mol/L         | mS/cm      | mS/cm       | mS/cm       | mS/cm       | mS/cm      |  |  |  |
| 5              | 0.005         |            |             |             |             |            |  |  |  |
| 10             | 0.010         |            |             |             |             |            |  |  |  |
| 20             | 0.020         |            |             |             |             |            |  |  |  |
| 40             | 0.040         |            |             |             |             |            |  |  |  |
| 60             | 0.060         |            |             |             |             |            |  |  |  |
| 80             | 0.080         |            |             |             |             |            |  |  |  |
| 100            | 0.100         |            |             |             |             |            |  |  |  |

Arbeitskreis Kappenberg Computer im Chemieunterricht

# Bestimmung der Äquivalentleitfähigkeit von Säuren, Laugen und Salzlösungen

**D 03** Seite 2 / 7

Evtl. Herstellen der Kalibrierlösung für Leitfähigkeitsmessungen

- 631,3 mg bei 150 °C getrocknetes und im Exsikkator aufbewahrtes Kaliumchlorid auf einem sauberen Uhrglas abwiegen.
- Mit Hilfe des Trichters und möglichst kohlensäurefreiem bidest. Wasser in einen 1000 mL Messkolben überführen, bis zur Marke auffüllen und schütteln.
- Die Lösung hat bei 25 °C einen Leitwert von 1.00 mS/cm. (Falls eine Thermostatisierung nicht möglich ist, wird der Leitwert der Tabelle entnommen.

| Temperatur in °C               | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| elektr. Leitfähigkeit in mS/cm | 0,867 | 0,885 | 0,904 | 0,924 | 0,943 | 0,962 | 0,981 | 1.000 |

#### Durchführung des Versuches:

- Falls möglich die Lösungen bei 25°C thermostatisieren.
- Beginnend mit der verdünntesten Lösung etwa 30 mL in ein 50 mL Becherglas geben, die Leitfähigkeitselektrode eintauchen und damit umrühren.
- Danach die Lösung weggießen, erneut etwa 30 mL einfüllen und mit der Elektrode umrühren.
- Den Messwert ablesen und in die Tabelle (Seite 1/7) eintragen.
- Die Leitfähigkeitselektrode gut spülen und in das 250 mL Becherglas zurückstellen.
- Die Messung mit den anderen Verdünnungen bzw. Substanzen wiederholen.
- Zuletzt eventuell in der gleichen Weise die Kalibrierlösung messen, zusätzlich die Temperatur der Kalibrierlösung messen und beide Werte notieren.

Beispielwerte: Leitwert der Kalibrierlösung: 1.103 mS/cm - Temperatur: 25°C.

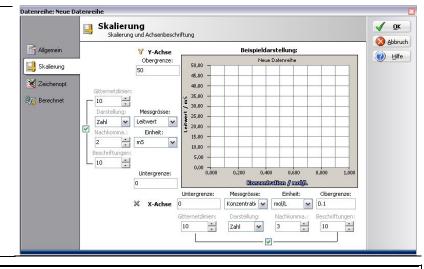
#### Auswertung des Versuches:

Aus dem Leitwert erhält man normalerweise keine stoffspezifischen Aussagen, deshalb bezieht man ihn auf die Konzentration (siehe: Arbeitsblatt D00 in Band IIA Grundlagen) und errechnet die Äquivalentleitfähigkeit  $\Lambda$ . Diese ist bei genügend kleinen Konzentrationen proportional zur Konzentration.

Ansonsten gilt eher das Gesetz von Kohlrausch: Die Äquivalentleitfähigkeit  $\Lambda$  ist proportional zur Wurzel aus der Konzentration. Zeichnet man einen solchen Graphen und extrapoliert gegen c=0, so erhält man die nur vom Stoff abhängige Größe "Äquivalentleitfähigkeit bei unendlicher Verdünnung"  $\Lambda_{\infty}$  (Grenzleitfähigkeit).

Die Auswertung wird für die NaCI - Lsg. genau beschrieben. Nachfolgendes gilt sinngemäß auch für die anderen Lösungen.

### Computerprogramm: AK Analytik 32.NET (→ Messen/Neu → Messwerte eintippen) Skalierung


y-Achse :

Gitternetzlinien ⇒10
Nachkomma: ⇒2
Beschriftungen: ⇒10
Obergrenze ⇒50
Messgröße: ⇒Leitwert
Einheit: ⇒mS

X-Achse:

Messgröße: ⇒Konzentration

Einheit: ⇔mol/L
Obergrenze ⇔0,1
Gitternetzlinien ⇔10
Nachkomma: ⇔3
Beschriftungen: ⇔10

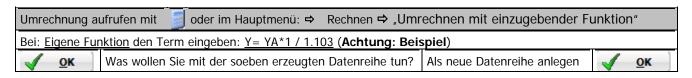


Anschließend: Wertepaare eintippen:

jeweils weiter mit [Enter]

Ende z.B. mit

⇒Fenster Schließen

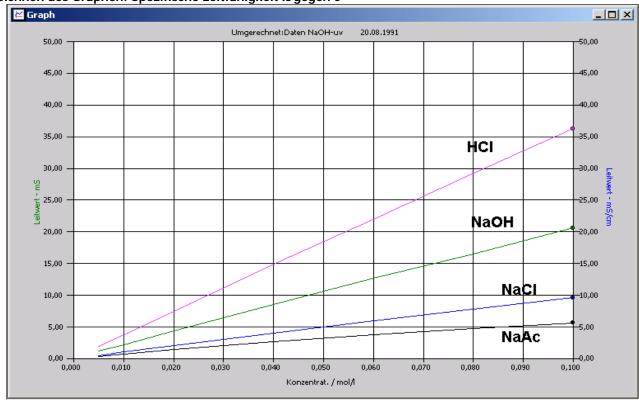

Geben Sie entsprechend der nachfolgenden Tabelle mit Beispielmesswerten Ihre Daten für die NaCI - Lösung ein.

| Konzentration | Leitwert   |             |             |             |  |  |  |  |
|---------------|------------|-------------|-------------|-------------|--|--|--|--|
|               | HCl - Lsg. | NaOH - Lsg. | NaCl - Lsg. | NaAc - Lsg. |  |  |  |  |
| mol/L         | mS/cm      | mS/cm       | mS/cm       | mS/cm       |  |  |  |  |
| 0.005         | 2.3        | 1.4         | 0.65        | 0.47        |  |  |  |  |
| 0.010         | 4.6        | 2.7         | 1.29        | 0.90        |  |  |  |  |
| 0.020         | 9.1        | 5.3         | 2.54        | 1.73        |  |  |  |  |
| 0.040         | 18.1       | 10.4        | 4.92        | 3.22        |  |  |  |  |
| 0.060         | 26.8       | 15.4        | 7.22        | 4.57        |  |  |  |  |
| 0.080         | 35.5       | 20.0        | 9.49        | 5.78        |  |  |  |  |
| 0.100         | 44.1       | 25.1        | 11.73       | 6.84        |  |  |  |  |

#### **Evtl. Leitwertkorrektur:**

Da die Proben thermostatisiert waren, kann man mit Hilfe des Leitwertes der Kalibrierlösung die Korrektur in erster Näherung vornehmen:

$$\text{Leitwert}_{\text{(wirklich)}} = \text{Leitwert}_{\text{(gemessen)}} * \frac{\text{Leitwert}_{\text{(Kalibrierlösung - Soll)}}}{\text{Leitwert}_{\text{(Kalibrierlösung - gemessen)}}}$$




Geben Sie die Messdaten der anderen Lösungen ein, rechnen Sie diese analog um. (Das Beispiel wird mit der Datei: NACL-UV fortgesetzt.)

Im HM ⇒Element ⇒Neue Datenreihe Neue Datenreihe einfügen

Vergessen Sie nicht, nach allen Umrechnungen das Projekt zu speichern.





Arbeitskreis Kappenberg Computer im Chemieunterricht

# Bestimmung der Äquivalentleitfähigkeit von Säuren, Laugen und Salzlösungen

**D 03** Seite 4 / 7

#### Umrechnung von spezifischer Leitfähigkeit auf Äquivalentleitfähigkeit $\Lambda_{c}$

Laut Arbeitsblatt (D00) muss der Leitwert durch die jeweilige Konzentration dividiert werden, um die Äquivalentleitfähigkeit zu erhalten. ( $z^*$  = hier immer gleich 1)

$$\Lambda = \frac{\kappa}{z^* \cdot c}$$

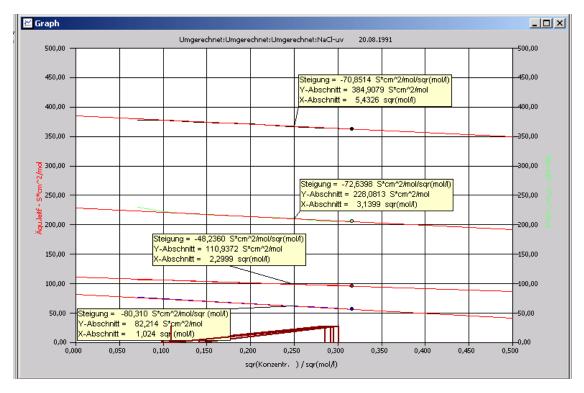
| Umrechnung aufrufen mit      | oder im Hauptmenü: ⇒          | Rechnen                     | oender | Funkti | ion"       |
|------------------------------|-------------------------------|-----------------------------|--------|--------|------------|
| Bei: Eigene Funktion den Ter | m eingeben: Y= <u>YA / XA</u> | Als neue Datenreihe anlegen | Ja     | 1      | <u>о</u> к |

Dann müssen die Achsenbeschriftungen und die Maximalwerte geändert werden.

| Skalierung ändern:           |            |                         |               |               |                     |           |     |           |
|------------------------------|------------|-------------------------|---------------|---------------|---------------------|-----------|-----|-----------|
| ⇒Rechte Maustaste            |            | ⇒Eigenschaften          | $\Rightarrow$ | entsprechende | Datenreihe          | markieren | und | anklicken |
| ⇒Eigenschaften ⇒ <i>y- A</i> | Achse Be   | <i>zeichnung</i> : Äqu. | leitf         | ⇒y- Achse- Ei | nheit: <u>S*cm^</u> | 2/mol     |     |           |
| y- Achse Obergrenze:         | <u>500</u> | ⇒OK                     | ⇒Ok           | ,             |                     |           |     |           |

### Der Graph $\Lambda_c$ gegen $\sqrt{c}$ , Bestimmung von $\Lambda_\infty$ bzw. des Kohlrausch-Faktors

Zu Linearisierung wird nach Kohlrausch (Arbeitsblatt D00)  $\Lambda_{\rm c}$  gegen  $\sqrt{\rm c}$  aufgetragen,


$$\Lambda_{\rm c} = \Lambda_{\infty} - A \cdot \sqrt{c}$$

| Umrechnung aufrufen mit                                           | oder im Hauptmenü: ⇒ | Rechnen                     | oender | Funktio | on"        |
|-------------------------------------------------------------------|----------------------|-----------------------------|--------|---------|------------|
| Bei: Eigene Funktion den Term eingeben: $X = \underline{sqr}(XA)$ |                      | Als neue Datenreihe anlegen | Ja     | 1       | <u>о</u> к |

Dann müssen die Achsenbeschriftungen und die Maximalwerte geändert werden.

| Skalierung än | dern:       |                |                            |          |               |                |              |     |           |
|---------------|-------------|----------------|----------------------------|----------|---------------|----------------|--------------|-----|-----------|
| ⇒Rechte       | Maustaste   | ⇒Eiger         | nschaften                  | ⇒ (      | entsprechende | Datenreihe     | markieren    | und | anklicken |
| ⇒Eigenso      | chaften ⇒ x | Achse Messgröß | <i>Be</i> : <u>sqr(Kor</u> | nzentr.) | ⇒x- Achse-    | Einheit: sqr(m | <u>ol/l)</u> |     |           |
| x- Achse C    | Obergrenze: | <u>0,5</u>     | <b>⇔ок</b>                 | ⇔ok      | ζ             |                |              |     |           |

Anmerkung: sqr bedeutet (square-root ) Wurzelzeichen





Die nun angezeigte Steigung gibt den Kohlrauschfaktor, der y-Abschnitt den Grenzleitwert  $\Lambda_{\infty}$  (Äquivalentleitfähigkeit bei unendlicher Verdünnung) an.

| Lösung | Kohlrauschfaktor | Grenzleitwert $\Lambda_{\infty}$ | $\Lambda_{\infty}$ (Literatur) |
|--------|------------------|----------------------------------|--------------------------------|
|        |                  | S · cm2 · mol <sup>-1</sup>      | S · cm2 · mol <sup>-1</sup>    |
| HCI    |                  | 384,9                            | 426,2                          |
| NaOH   |                  | 228                              | 248,7                          |
| NaCl   | -50              | 111                              | 126,5                          |
| NaAc   |                  | 82,2                             | 91,0                           |

#### **Tips**

Möchten Sie alle Kurven in einer Graphik, wie oben dargestellt, ⇒Rechte Maustaste, ⇒Anklicken der gewünschten Datenreihen ⇒OK

#### **Entsorgung**

Literatur: F. Kappenberg; Computer im Chemieunterricht 1988, S. 142, Verlag Dr. Flad, Stuttgart