
Bestimmung der Dissoziationskonstanten von Essigsäure (Variante nach R. Nagel)

D 05 Konduktometrie

Prinzip:

Essigsäure ist ein schwacher Elektrolyt. Die Leitfähigkeit bei sehr kleinen unterschiedlichen Verdünnungen wird gemessen und graphisch die Dissoziationskonstante bestimmt.

Versuchsaufbau:

Materialliste:

Geräte:

- 1 Computer
- 1 ALL-CHEM-MISST
- 1 USB-/ serielles Kabel
- 1 LF- Elektrode
- 1 Becherglas, 600 mL

1 Titrierstativ

- 1 Bürette, 25 mL
- 1 Stativ
- 1 Muffe
- 1 Greifklemme, klein
- 1 Messzylinder, 100 mL

Magnetrührer

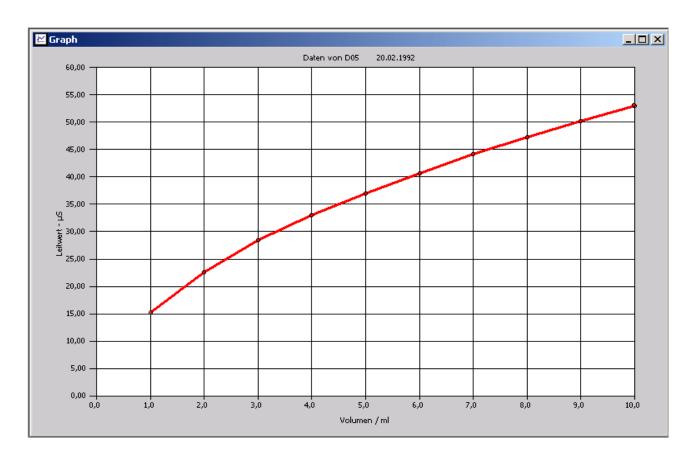
1 Rührmagnet

Chemikalien:

Essigsäure, c=0.05 mol/L

dest. Wasser

Vorbereitung des Versuches:


- 350 mL dest. Wasser in das Becherglas füllen.
- Rührfisch dazugeben und Becherglas auf den Magnetrührer stellen.
- Die Bürette mit der Essigsäure spülen und füllen. Auf die Nullmarkierung einstellen.
- Die LF-Elektrode gründlich mit dest. Wasser abspülen und in die Lösung tauchen.
- Darauf achten, dass die Platinbleche gut bedeckt werden. Der Rührmagnet sollte sich unter der LF-Elektrode drehen
- Die Bananenstecker der LF- Elektrode in die entsprechende LF Buchsen stecken.

Computerprogramm: AK Analytik 32. NET (→ Schnellstarter → ALL-CHEM-MISST_II 1-Kanal)

Angezeigte Messgröße:	Leitwert			Kanal		κ (LF)		
Für Grafik	0	-	60 μS	Volumeninterva	all:	1 mL	Gesamtvol.:(für Grafik)	10 mL
Titration über Volumen auf Tastendruck						Direkt zu M	lessung	

Durchführung des Versuches:

- Zur Messwertaufnahme bei 0,0 mL mit der Maus auf den Button lieder besser auf die drücken.
- Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL einen Messwert mit Leertaste oder Maus speichern.
- Beenden mit Klick auf <a>Messung beenden oder mit der Taste <a>Esc.

Auswertung des Versuches:

Prinzip: Die Leitfähigkeit von schwachen Elektrolyten wird vom Massenwirkungsgesetz beschrieben. Eine ausführliche Herleitung findet sich auf dem Arbeitsblatt D00

$$K_{S} = \frac{\alpha^{2}}{1 - \alpha} \cdot c_{0} \tag{7}$$

$$\alpha = \frac{\Lambda_{c}}{\Lambda_{\infty}} \tag{8}$$

Setzt man nun Gleichung (8) in Gleichung (7) ein, ergibt sich

ang (8) in Gleichung (7) ein, ergibt sich
$$K_S = \frac{\frac{\Lambda_c^2}{----}}{\frac{\Lambda_\infty^2}{1}} \cdot c_0 = \frac{\Lambda_c^2}{\Lambda_\infty \cdot (\Lambda_\infty - \Lambda_c)} \cdot c_0 \quad (9)$$

$$\frac{1}{--\cdot (\Lambda_\infty - \Lambda_c)} \cdot c_0 = \frac{\Lambda_c^2}{\Lambda_\infty \cdot (\Lambda_\infty - \Lambda_c)} \cdot c_0 \quad (9)$$

Bestimmung der Dissoziationskonstanten von Essigsäure (Variante nach R. Nagel)

D 05 Seite 3 / 5

durch weitere Umwandlung gelangt man zu:

$$\Lambda_c^2 \cdot c_0 = -K_S \Lambda_\infty \cdot \Lambda_c + K_S \cdot \Lambda_\infty^2$$
 (11)

Das entspricht der Geradengleichung:

$$y = m \cdot x + b \tag{12}$$

Man trägt also in einem Graphen $\Lambda_c^2 \cdot c_0$ gegen $\ \Lambda_c$ auf und ermittelt $\ \mbox{die Steigung}$

$$m = -K_S \cdot \Lambda_{\infty}$$
 bzw. $\Lambda_{\infty} = -\frac{m}{K_S}$ (13, 14)

und den y- Abschnitt

$$b = K_{S} \cdot \Lambda_{\infty}^{2}$$
 bzw.
$$K_{S} = \frac{b}{\Lambda_{\infty}^{2}}$$
 (15, 16)

Einsetzen von (14) in (16) liefert die Dissoziationskonstante:

$$K_{S} = \frac{b \cdot K_{S}^{2}}{m^{2}} = \frac{m^{2}}{b}$$

$$(17)$$

Entsprechendes gilt für die Bestimmung der Äquivalentleitfähigkeit bei unendlicher Verdünnung Λ_{∞} : Einsetzen von (17) in (14) ergibt:

$$\Lambda_{\infty} = -\frac{m \cdot b}{m^2} = -\frac{b}{m} \tag{18}$$

Für die Auswertung müssen die Daten entsprechend Gleichung (11) bzw. (12) aufbereitet werden. Die Beispielwerte entsprechen der Versuchsvorschrift: c(HAc) = 0.05 mol/L, Vorlage: 350 mL Wasser

1. Umrechnung der x- Werte von Volumen in Konzentration: $c = V \cdot c / V_{neu}$

Umrechnung aufrufen mit	oder im Hauptmenü: ⇒	Rechnen ⇒ "l	Jmrechnen mit einzugebende	er Fur	nktion"	
Eigene Funktion: eingeben: X	= (XA/1000*0.05)/(0.35	+XA/1000)	Als neue Datenreihe anlegen	Ja	1	<u>o</u> K

2. Umrechnung der y- Werte von Leitwert in Äquivalentleitfähigkeit $\Lambda_c = \kappa/c$

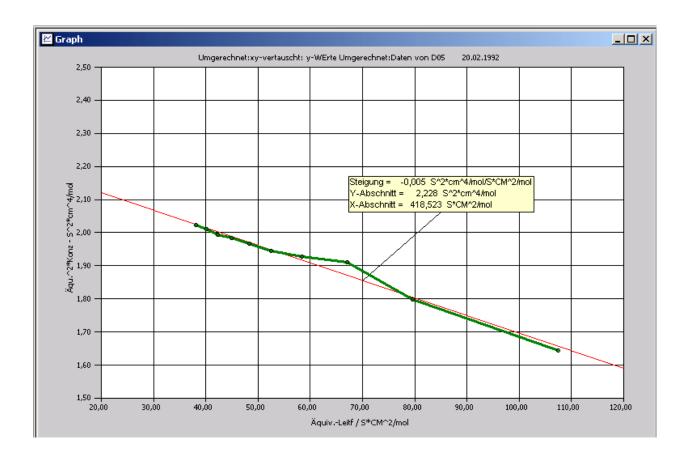
Umrechnung aufrufen mit	oder im Hauptmenü: ⇒	Rechnen	⇒ "Umrechnen mit einzugel	oender	Funktio	on"
Bei: Eigene Funktion den Te	erm eingeben: Y= $\underline{YA} / 1000$	/ XA	Als neue Datenreihe anlegen	Ja	1	<u>о</u> к

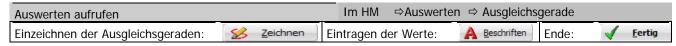
3. Tauschen der Achsen: Λ_c auf die x- Achse und c auf die y-Achse

Umrechnung aufrufen mit	E 18	oder im Hauptmenü: ⇒	Rechnen	⇒ "Vertauschen der X/Y-Werte	, "		
				Als neue Datenreihe anlegen	Ja	1	<u>о</u> к

Bestimmung der Dissoziationskonstanten von Essigsäure (Variante nach R. Nagel)

D 05 Seite 4 / 5


4. Multiplizieren der c-Werte mit $\Lambda_{\rm c}^2$


Umrechnung aufrufen mit	oder im Hauptmenü: ⇒ Rech	nen <mark>⇒ "Umrechnen mit einzuge</mark>	bender	Funktion"	
Bei: Eigene Funktion den Tern	n eingeben: Y= <u>YA * XA *XA</u>	Als neue Datenreihe anlegen	Ja	<u>√ o</u> k	

5. Beschriften der Achsen - Zeichnen des Graphen

Die Beschriftungen müssen stark verändert werden, deshalb sind sie hier angegeben:

: ⇒Eigenschaften	⇒Eigenschaften der	Datenreihe ⇒Skalierung
	X-Achse:	
⇒10	Untergrenze	⇒20
⇒2	Messgröße:	⇒ÄquivLeitf.
⇒10	Einheit:	⇒ S^2*cm^2/mol
⇒2,5	Obergrenze	⇒120
⇒S^2*cm^4/mol	Gitternetzlinien	⇒10
⇒mS	Nachkomma:	⇒2
⇒1,5	Beschriftungen:	⇒10
	⇒10 ⇒2 ⇒10 ⇒2,5 ⇒S^2*cm^4/mol ⇒mS	X-Achse: ⇒10 Untergrenze ⇒2 Messgröße: ⇒10 Einheit: ⇒2,5 Obergrenze ⇒S^2*cm^4/mol Gitternetzlinien ⇒mS Nachkomma:

Notieren Sie Steigung (-0.005) und y- Achsenabschnitt (2.2)!

Bestimmung der Dissoziationskonstanten von Essigsäure (Variante nach R. Nagel)

D 05 Seite 5 / 5

6. <u>Bestimmung der Dissoziationskonstanten</u> K_S = Steigung² / y- Abschnitt (Gleichung 17)

Berechnung:	Im HM: ⇒Extras ⇒wiss.´Taschenrechner´
Termeingabe: (-0.005*-0.005) /	/ 2.2 ⇒Eingabetaste drücken oder auf "=" klicken
Als Ergebnis liefert der Rechner: Literaturwert: 10-4.76 bzw. 7. Bestimmung der Grenzleitfähigkeit = - y-Abschnit	1,136 · 10 ⁻⁵ 1.74 · 10 ⁻⁵ tt / Steigung (Gleichung 18)
Berechnung:	Im HM: ⇒Extras ⇒wiss.´Taschenrechner´
<i>Term eingäbe:</i> <u>- 2.2 / - 0.005</u>	⇒Eingabetaste drücken oder auf "=" klicken
Als Ergebnis liefert der Rechner:	

TIP

- Achtung: Sie müssen bei diesem Versuch sehr sorgfältig arbeiten, (Temperatur einhalten, Zellkonstante beachten usw.) da die Ergebnisse durch Extrapolation der Messwerte erhalten werden müssen.
- Dazu sollte entsprechend dem Arbeitsblatt D04 mit einer Kalibrierlösung die Messanordnung kalibriert werden.

Literatur: R. Nagel, Praktikums - und Demonstrationsversuche zum Thema Leitfähigkeit in der Sekundarstufe II, Fa. Phywe, Göttingen , 1984