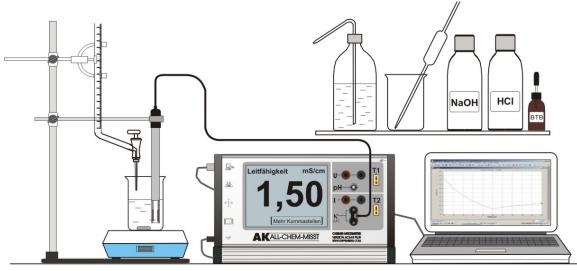
Arbeitskreis Kappenberg Computer im Chemieunterricht


Konduktometrische Titration von Salzsäure mit Natronlauge

D 10 Seite 1 / 2

Prinzip:

Da sich bei der Neutralisation die Leitfähigkeit ändert, kann man die Titration auch konduktometrisch verfolgen. Die Qualität der Endpunkterkennung soll anhand der Neutralisation von Reaktionspartnern unterschiedlicher Konzentration beurteilt werden.

Versuchsaufbau:

Materialliste:

Geräte:

1 ALL-CHEM-MISST II/ Netzteil

1 Computer

1 USB/serielles Kabel

1 LF-Elektrode

1 Becherglas, 100 mL

1 "Spülbecherglas", 250 mL

Pipette, 10 mL

1 Stativ

1 Bürette, 25 mL

1 Muffen

1 Bürettenklemme

1 Elektrodenklemme

1 Magnetrührer

1 Rührfisch

Chemikalien:

Natronlauge, c = 0.1 mol/LSalzsäure, c = 0.1 mol/L

dest. Wasser

Bromthymolblaulösung

Vorbereitung des Versuches:

- Die Geräte entsprechend der Zeichnung bereitstellen.
- 10 mL Salzsäure mit der Pipette und evtl. ein paar Tropfen Bromthymolblaulösung in das Becherglas füllen.
- Rührfisch dazugeben und Becherglas auf den Magnetrührer stellen.
- Die Bürette mit der Natronlauge spülen und füllen. Auf die Nullmarkierung einstellen.
- Die LF-Elektrode gründlich mit dest. Wasser abspülen und in die Lösung tauchen.
- So viel dest. Wasser zugeben, dass die Platinbleche gut bedeckt werden. Der Rührmagnet sollte sich unter der LF-Elektrode drehen.
- Die Bananenstecker der LF- Elektrode in die entsprechende LF Buchsen stecken.

Computerprogramm: AK Analytik 32. NET (→ Schnellstarter → ALL-CHEM-MISST_II 1-Kanal)

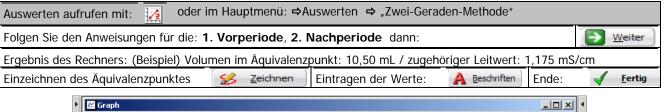
Angezeigte Messgröße:	Leitwert			Kanal		κ (LF)		
Für Grafik	0	-	10 mS	Volumenintervall:		0,5 mL	Gesamtvol.:(für Grafik)	20 mL
Titration über Volumen auf Tastendruck						Direkt zu N	Messung	

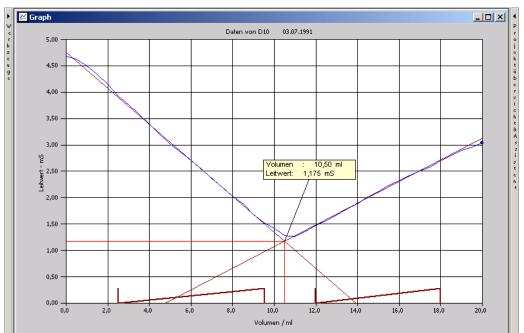
Durchführung des Versuches:

- Zur Messwertaufnahme bei 0,0 mL mit der Maus auf den Button " **Einzelwert aufnehmen** " klicken oder besser auf die [Leertaste] drücken.
- Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL einen Messwert mit Leertaste oder Maus speichern.
- Beenden mit Klick auf " Messung beenden " oder mit der Taste [Esc].

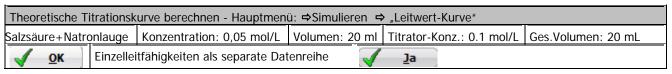
Auswertung des Versuches:

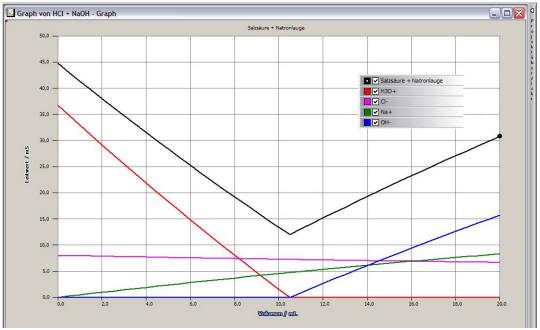
Prinzip: Die Reaktion verläuft nach folgender Gleichung:


$$1 H_3 O^+(aq) + 1 Cl^-(aq) + 1 Na^+(aq) + 1 OH^-(aq) \rightarrow 2 H_2 O(l) + 1 Na^+(aq) + 1 Cl^-(aq)$$


Arbeitskreis Kappenberg Computer im Chemieunterricht

Konduktometrische Titration von Salzsäure mit Natronlauge


D 10 Seite 2 / 2


Im Wesentlichen fällt die Leitfähigkeit zunächst, weil schnelle H_3O^+ -Ionen durch langsamere Na^+ -Ionen ersetzt werden. Aber auch die Konzentrationen der Ionen (Verdünnung) spielt eine Rolle. Nach dem Äquivalenzpunkt steigt die Leitfähigkeit durch die weniger beweglichen OH^- -Ionen nur mäßig an. Zur Auswertung bietet sich die "Zweigeradenmethode" an.

Der Einfluss der einzelnen Ionen auf die Leitfähigkeit lässt sich sehr schön durch eine Simulation verdeutlichen:

Literatur: F. Kappenberg: Computer im Chemieunterricht 1988, S. 142, Verlag Dr. Flad, Stuttgart