

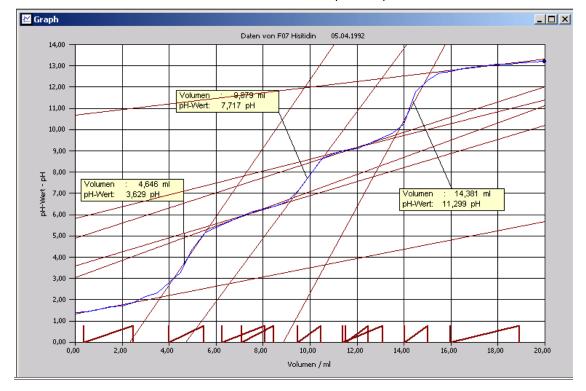
Titration von Histidin(dihydrochlorid) mit Natronlauge

Histidin als Vertreter einer dreibasigen Säure wird hier stellvertretend vorgestellt. Prinzip Aufbau **Benötigte Geräte** Verwendete Chemikalien und ☐ ALL-CHEM-MISST II oder ACM Junior ☐ Bürette, 50 mL ☐ Natronlauge (c = 0,1 mol/L) <!> Vorberei ☐ Netzteil / USB-Anschlusskabel ☐ Becherglas, 100 mL ☐ Histidindihydrochlorid-Lsg. -tung ☐ Computer ☐ Stativ, Muffe (c =0,05 mol/L) siehe Seite: 3 ☐ pH-Elektrode mit BNC ☐ Bürettenklemme ☐ destilliertes Wasser ☐ Spülbecherglas, 250 mL ☐ Elektrodenklemme □ evtl. Pufferlösung, pH = 2 ☐ Pipette, 10 mL ☐ Magnetrührer □ evtl. Pufferlösung, pH = 7 ☐ Pipettierhilfe ☐ Rührfisch Vorbereitung des Versuchs Geräte entsprechend der Zeichnung bereitstellen und aufbauen. 10 mL Histidindihydrochlorid-Lsg. mit der Pipette in das Becherglas geben. Rührfisch dazugeben und Becherglas auf den Magnetrührer stellen. Die Bürette mit der Natronlauge spülen und füllen. Auf die Nullmarkierung einstellen. pH-Elektrode in das halb mit Leitungswasser gefüllte "Spülbecherglas" stellen. Den Computer über das serielle oder USB-Kabel mit dem "ALL-CHEM-MISST" verbinden. pH- Elektrode in die entsprechende pH-Buchse stecken. Vorbereitung am Computer AK Analytik 11 starten; Messen mit Geräte-Schnellstarter App ALL-CHEM-MISST II Anweisungen befolgen und 'abhaken' Weiter Auswahl des Messkanals: (Buchse im Bild) pH Weiter Abfrage "pH-Wert kalibrieren?": Ja Abfrage: ,pH Wert kalibrieren' la (bei "nein" grünen Kasten' überspringen!) Zwei unterschiedliche Pufferlösungen bereithalten! Anleitung gelesen, jetzt beginnen und abhaken Elektrode gespült und in Pufferlösung z.B. pH=7 getaucht pH-Wert 1 (Etikett) (bestätigen oder ändern) [z.B. 7] Warten bis Driftanzeige "stabil", dann Puffer bestätigen Elektrode gespült und in 2. Pufferlösung z.B. pH=2 getaucht > 2. pH-Wert (Etikett) (bestätigen oder ändern) 🚈 z.B. 2 Warten bis Driftanzeige "stabil", dann Puffer bestätigen Abschließen der Kalibrierung mit Akzeptieren Auf welche Weise möchten Sie messen: Volumen dann: Tastatur 4, Volumenintervall: w 0,5 mL, Gesamtvolumen: 20,0 mL, x-Komma Darstellung der Kanäle im Graphen: pH-Wert y-Untergrenze im Graphen y-Obergrenze 14 y-Nachkomma 1 - Bestätigen mit Akzeptieren dann Weiter

Titration von Histidin(dihydrochlorid) mit Natronlauge

Durchführung

- PH-Elektrode am Stativ befestigen. Der Rührfisch darf beim Drehen die Elektrode nicht berühren.
- Zur Messwertaufnahme bei 0,0 mL Einzelwert oder besser die 'Leertaste' drücken.
- Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL einen Messwert mit 'Leer'-Taste oder Maus speichern.
- Zum Beenden Messung beenden drücken.
- Projektname eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren


(Datei HISTID01)

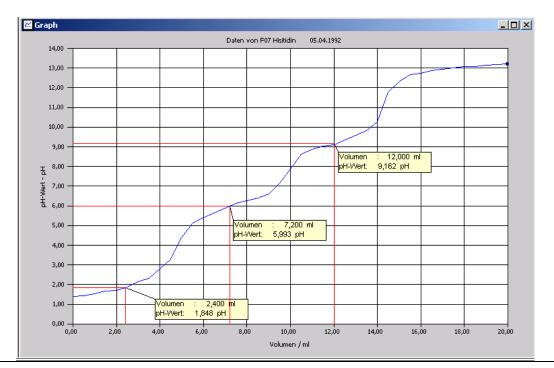
Im Gegensatz zur Phosphorsäure sind beim Histidin alle drei Stufen in der Titrationskurve schön zu erkennen. Wählen sie als Vorlage 10 mL der Histidindihydrochloridlösung (c = 0.5 mol/L):

Die Neutralisation des Histidins erfolgt in drei Stufen, in denen, besonders in der Nähe des Halbäquivalenzpunktes, jeweils zunächst der pH-Wert nur geringfügig steigt. In der Nähe des Äquivalenzpunktes steigt der pH-Wert bei Zugabe der Hydroxidionen stärker.

Die Bestimmung des Äquivalenzpunktes erfolgt nach der Drei-Geraden-Methode (Tangentenmethode) oder mit Hilfe der im Programm vorgesehenen automatischen Wendepunktbestimmung.

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen Drei-Geraden-Methode
- Folgen Sie den Anweisungen (mit 'Abhaken') 1. für die Vorperiode, 2. Hauptperiode und 3. Nachperiode
- Zur Prüfung des Ergebnisses Koordinaten Zeichnen dann Konzentration berechnen
- Akzeptieren und Beschriften (evtl. Position ändern) und Fertig
- Die Drei-Geraden-Methode auch auf die nächsten beiden Äguivalenzpunkte anwenden.

Titration von Histidin(dihydrochlorid) mit Natronlauge



Bestimmung der pKs- Werte:

Prinzip: Nach der Puffergleichung ist im Halbäquivalenzpunkt der pH-Wert gleich dem pKs-Wert. Man muss sich vorher die Äquivalenzpunkte bestimmen lassen und notiert haben! Im Folgenden wird der Äquivalenzpunkt mit der größten Steigung (14,4 mL / 3) als Bezug gewählt.

- Auswerten im Hauptmenü AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen
- Halbäquivalenzpunkt (Achtung: es folgen Beispielwerte:!)
- Linker x-Wert: 0,0 mL, Rechter x-Wert: 10.14 mL Stützpunkte: 20 und Berechnen
- Akzeptieren (evtl. Position ändern) und Eeschriften (evtl. Position ändern) und Fertig

Herstellen der Lösung

- 1. 2,85 g Histidindihydrochlorid im 25 mL Messkölbchen mit Wasser
- 2. 2,61 g Histidinhydrochlorid Monohydrat im 25 mL Messkölbchen mit 12.5 mL Salzsäure (c = 1 mol/L) und dest. Wasser
- 3. 1,94 g Histidin im 25 mL Messkölbchen mit Salzsäure (c = 1 mol/L)

Tipp

Wollen Sie neben den Halbäquivalenzpunkten auch die Äquivalenzpunkte einzeichnen (wie in der Abbildung), so wählt man wieder den Menüpunkt <u>Halbäquivalenzpunkt</u> an, gibt aber für den linken und rechten Rand denselben Wert ein, nämlich den Volumenwert des Äquivalenzpunktes.

	Beachten:	0		Entsorgung	Ausguss nach Neutralisation
--	-----------	---	---------	------------	-----------------------------

Literatur

F. Kappenberg; Computer im Chemieunterricht 1988, S. 85, Verlag Dr. Flad, Stuttgart

W. Asselborn et. al. Messen mit dem Computer im Chemieunterricht, S: 65f, Aulis Verlag Köln, 1989