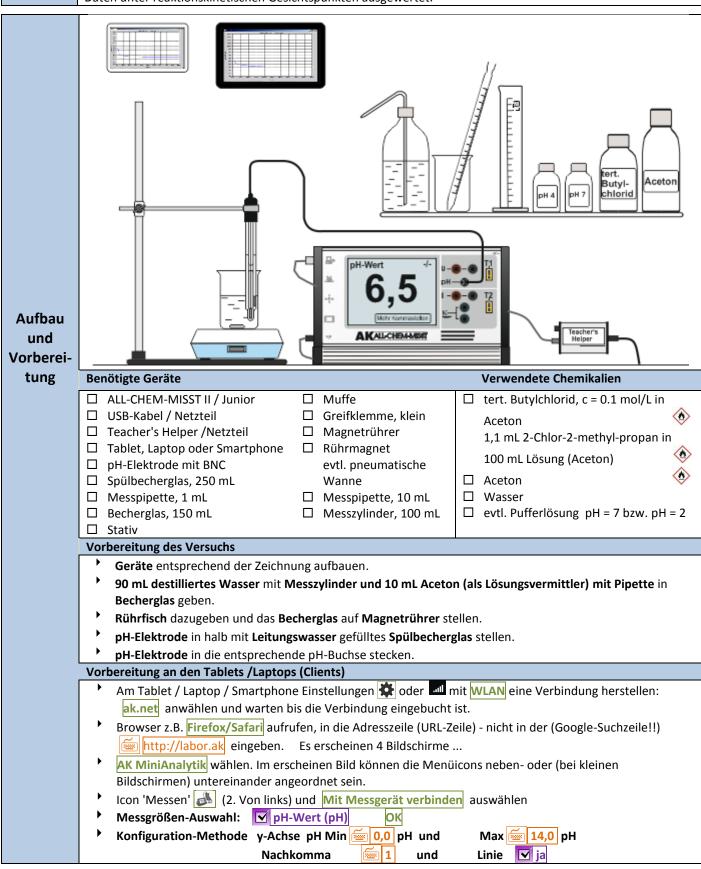
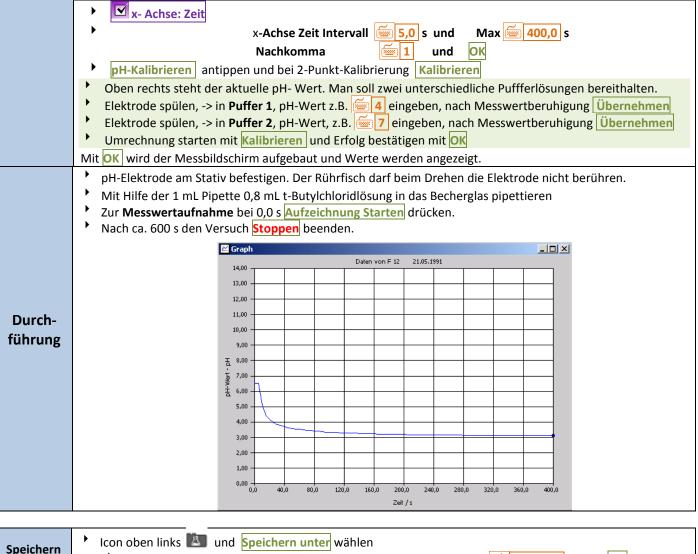
——AK——Kappenberg


Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Prinzip

Die Hydrolyse von tert. Butylchlorid in wässriger Lösung kann mit Hilfe der pH-Wert-Messung verfolgt werden, da dabei Oxoniumionen entstehen. Der Versuch wird über einen bestimmten Zeitraum vermessen und die Daten unter reaktionskinetischen Gesichtspunkten ausgewertet.



Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) Est User und

Excel-**Export**

- Icon oben links 🔊 und Datenreihen exportieren wählen Unter ,Datenreihen Speichern' Projekt F12 User auswählen und Speichern
- Je nach Gerät mit "Speichern unter' noch Pfad aussuchen und bestätigen

Öffnen bei **Bedarf**

- Ist der Teacher's Helper nicht mehr zu erreichen: Browser z.B. Firefox/Safari aufrufen, in die Adresszeile (URL-Zeile) - nicht in der (Google-Suchzeile!!) [http://labor.ak eingeben. -
- Icon oben links 💹 und Laden "Projekt Laden" F12 User direkt auswählen und →anklicken

Berechnung der Konzentration an tert. Butylchlorid

Bei der Hydrolyse von tert. Butylchlorid entstehen tert. Butylalkohol und Salzsäure bzw. Oxoniumionen; d.h. der pH-Wert sinkt.

$$(CH_3)_3C-CI+2H_2O \rightleftharpoons (CH_3)_3C-OH+H_3O^++CI^-$$

Aus dem pH-Wert (den frei werdenden H₃O⁺-Ionen) lässt sich die Konzentration des tert.-Butylchlorids (BC) berechnen, da für jedes reagierende Butylchloridmolekül ein Oxoniumion entsteht. Die Oxoniumionen aus dem Wasser können dabei vernachlässigt werden.

$$c(BC) = (n_A(BC) \cdot V - n_H \cdot V) / V = c_A(BC) - 10^{-pH}$$

Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Die Anfangskonzentration an t-Butylchlorid: c = c(BC)*V(BC)/V = 0.1 mol/L*0.0008 L/0.1 L = 0.000 8 mol/LZur besseren Darstellbarkeit wird in mmol/L umgerechnet (die Werte werden mit 1000 multipliziert).

- ▶ Icon 'Auswerten' (3. von links) und y-Werte umrechnen und bel. Funktion
- 0,8-((10^(-YA))*1000 ? OK
- Datenreihen (links neben 'Wertetabelle') und dann auf Icon 'Menü' und Eigenschaften
- y- Achse Messgröße:
 - Konzentration Einheit mmol/L Untergrenze: 0 Obergrenze: 0,8
- Neue Datenreihe wird automatisch eingezeichnet
- Icon oben links und Speichern unter wählen
- Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) | Hydrolyse und OK

Das ist die Ausgangsdatenreihe für die Auswertungen.

Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Vorschläge zur Bestimmung der Reaktionsordnung: Automatik für Kinetik

Die Geschwindigkeitsgleichung für eine Reaktion erster Ordnung lautet:

$$dc$$

$$v = - - - = k_1 \cdot c^1$$

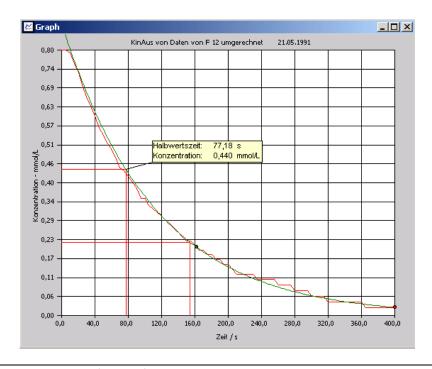
$$dt$$

Durch Integration der Gleichung erhält man eine e - Funktion:

$$-k_1$$
···
 $c_t = c_0 \cdot e$

Setzt man für c_t den Wert $c_0/2$ ein, so erhält man

$$c_0 - k_1 \cdot t_{1/2}$$
---- = $c_0 \cdot e$
2


durch Umformen und Logarithmieren:

$$\ln (2) = t_{1/2} \cdot k_1 = k_1 = ------ t_{1/2}$$

Auswertung

- ▶ Icon 'Auswerten' (3. von links) und Automatik Kinetik

 Der Rechner gibt die Summe der Fehlerquadrate an. Der kleinste Wert ist hier bei 2.Ordnung
- Zeichnen und (evtl. Position ändern) und Fertig
- Neue Datenreihe wird automatisch eingezeichnet

Test: Man setzt die Halbwertszeit (t=87,8 s) als neuen Startpunkt, dann muss beim doppelten Wert (t=175,6 s) die Hälfte der Hälfte reagiert haben, d.h. der Punkt für c/4 muss auf dem Graphen liegen. Geschwindigkeitskonstante aus der Halbwertszeit:

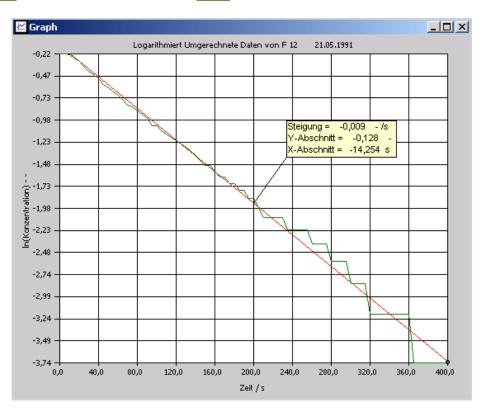
$$k_1 = \ln(2) / t_{1/2} = 0.6931 / 77,18 s = 0.00898 s^{-1}$$

Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Auswertung nach Reaktion 1. Ordnung

Durch Integration der Geschwindigkeitsgleichung für die Reaktion erster Ordnung (vorige Seite) erhält man

$$\begin{array}{rcl} & - k_1 \cdot t \\ c_t & = c_0 \cdot e \end{array}$$


das bedeutet, bei Reaktionen erster Ordnung nimmt die Konzentration des Edukts exponentiell mit der Zeit ab. Logarithmiert man die Gleichung (6), so erhält man.:

$$\ln c_t = \ln c_0 - k_1 \cdot t$$

Trägt man In c gegen t auf, so muss sich eine Gerade ergeben:

Ausgangsdatenreihe ist die Datenreihe mit der Konzentration – sie muss geladen und gewählt sein.

- Icon 'Auswerten' (3. von links) und y-Werte umrechnen und Logarithmus OK
- Neue Datenreihe wird automatisch eingezeichnet
- Wieder unter Icon 'Auswerten' (3. von links) und Automatik Kinetik
- Zeichnen und (evtl. Position ändern) und Fertig

Die Geschwindigkeitskonstante entspricht der Steigung: $k_1 = m = 0.009 \text{ s}^{-1}$. Der Korrelationskoeffizienten (-0.996) ist auch relativ (?) gut.

Literatur

Potenziometrische Verfolgung der Hydrolyse von 2-Chlor-2-methylpropan

Auswertung nach Reaktion 2. Ordnung:

Die Geschwindigkeitsgleichung für eine Reaktion erster Ordnung lautet:

$$dc$$

$$v = - - - = k2 \cdot c^2$$

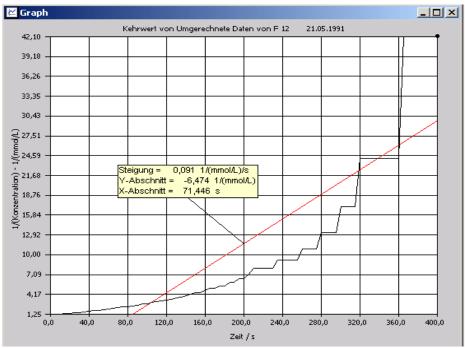
$$dt$$

Durch Integration der Gleichung erhält man

$$c_0$$

$$= k_2 \cdot c_0 \cdot t + 1$$

$$c_t$$


Formt man die Gleichung um, so erhält man:

$$\begin{array}{ccc}
1 & & 1 \\
& \cdots & = k_2 \cdot t + \cdots \\
c_t & & c_0
\end{array}$$

Trägt man 1/c (y-Achse) gegen t (x-Achse) auf, müsste es bei Vorliegen zweiter Ordnung eine Gerade ergeben. Man zeichnet eine Ausgleichsgerade und ermittelt die Steigung dieser Geraden.

Ausgangsdatenreihe ist die Datenreihe mit der Konzentration – sie muss gewählt sein.

- Icon 'Auswerten' (3. von links) und y-Werte umrechnen und Logarithmus OK
- Neue Datenreihe wird automatisch eingezeichnet
- Wieder unter Icon 'Auswerten' (3. von links) und Automatik Kinetik
- Zeichnen und (evtl. Position ändern) und Fertig

Es liegt offensichtlich keine Reaktion zweiter Ordnung vor.

TippDie Reaktionsführung ist für eine exakte kinetische Auswertung recht schwierig. Bessere Ergebnisse erhält man aus den Leitfähigkeitsmessungen (Arbeitsblatt D19)

Beachten:	⊕	Entsorgung	Organische Abfälle