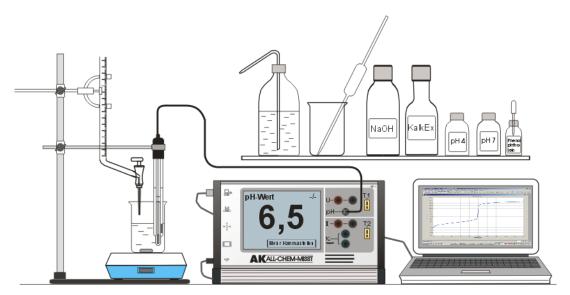
Arbeitskreis Kappenberg Computer im Chemieunterricht


Bestimmung von Ameisensäure in einem Kalklöser

F 11 Seite 1 / 3

Prinzip:

Im Handel erhältlicher Kalklöser wird mit Natronlauge titriert. Der Gehalt wird bestimmt und die vorhandene Säure aufgrund des pKs-Wertes identifiziert.

Versuchsaufbau:

Materialliste:

Geräte:

- 1 ALL-CHEM-MISST II / Netzteil
- 1 Computer mit Kabel
- 1 serielles oder USB-Kabel
- 1 pH-Elektrode mit BNC
- 1 Becherglas, 100 mL
- 1 "Spülbecherglas", 250 mL
- 1 Pipette, 1 mL

- 1 Titrierstativ
- 1 Bürette, 25 mL
- 1 Stativ
- 1 Muffe
- 1 Bürettenklemme
- 1 Elektrodenklemme
- 1 Magnetrührer
- 1 Rührfisch

Chemikalien:

Natronlauge, c = 1 mol/L Kalklöser (z.B. Calcit)

dest. Wasser

evtl. Pufferlösung pH = 7

evtl. Pufferlösung pH = 2

Vorbereitung des Versuches:

- Geräte entsprechend der Zeichnung bereitstellen und aufbauen.
- 1 mL Kalklöser mit der Pipette in das Becherglas geben.
- Rührfisch dazugeben und Becherglas auf den Magnetrührer stellen.
- Die Bürette mit der Natronlauge spülen und füllen. Auf die Nullmarkierung einstellen.
- pH-Elektrode in das halb mit Leitungswasser gefüllte "Spülbecherglas" stellen.
- Den Computer über das serielle oder USB-Kabel mit dem "ALL-CHEM-MISST II" verbinden.
- pH-Elektrode in die entsprechende pH-Buchse stecken.

Computerprogramm AK Analytik 32.NET (→ Schnellstarter → ALL-CHEM-MISST_II 1-Kanal)

Messgröße:	pH-Wert					
pH Kalibrieren	Ja	Anweisungen befolgen und entsprechende Werte eingeben.				
Für Grafik	0 - 14 pH	Bei Volumenintervall:	0,5 mL	Gesamtvol.:(für Grafik)	20 mL	
Titratio	n über Volumen auf Ta	astendruck	Direkt zur M	essuna		

Durchführung des Versuches:

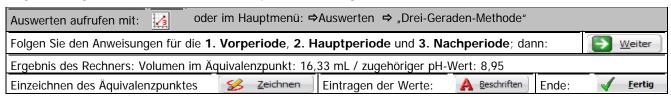
- -pH-Elektrode am Stativ befestigen. Der Rührfisch darf beim Drehen die Elektrode nicht berühren.
- Zur Messwertaufnahme bei 0,0 mL mit der Maus auf den Button 🕟 🔤 klicken oder besser auf die drücken.
- Die Titratorflüssigkeit kontinuierlich (mit recht kleiner Geschwindigkeit!) aus der Bürette auslaufen lassen und nach jeweils 0,5 mL einen Messwert mit Leertaste oder Maus speichern.
- Beenden mit Klick auf <a>Messung beenden oder mit der Taste <a>Esc.

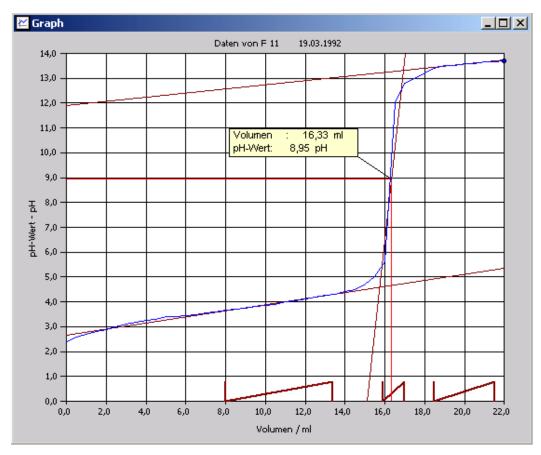
Arbeitskreis Kappenberg Computer im Chemieunterricht

Bestimmung von Ameisensäure in einem Kalklöser

F 11 Seite 2 / 3

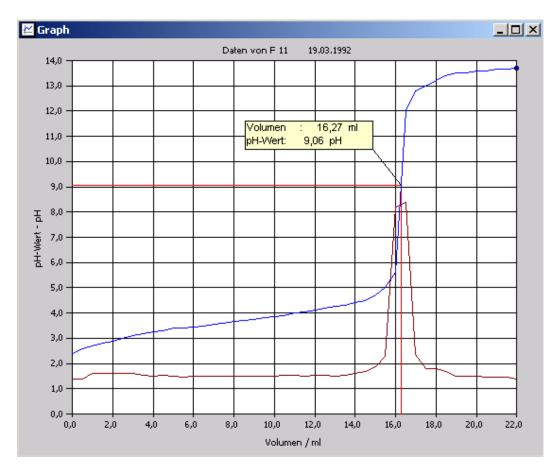
Auswertung des Versuches:

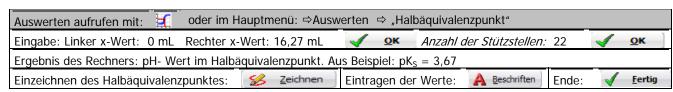

Prinzip: Die Reaktion verläuft nach folgender Gleichung:


$$HCOOH(aq) + Na^+(aq) + OH^-(aq) \rightleftharpoons HCOO^-(aq) + Na^+(aq) + H_2O(l)$$

Der pH-Wert ist zu Beginn niedrig, da die Ameisensäure eine recht "starke" schwache Säure ist. Im Laufe der Titration werden die aus der Dissoziation der Ameisensäure stammenden H₃O⁺-Ionen durch die Hydroxidionen neutralisiert. Wegen der Nachdissoziation steigt der pH-Wert nur geringfügig, besonders in der Nähe des Halbäquivalenzpunktes. In der Nähe des Äquivalenzpunktes steigt der pH-Wert bei weiterer Zugabe der Hydroxidionen sprunghaft an. Am Ende der Titration ist die Steigung wieder gering.

1. Möglichkeit


Die Bestimmung des Äquivalenzpunktes erfolgt nach der Drei-Geraden-Methode (Tangentenmethode) oder mit Hilfe der im Programm vorgesehenen automatischen Wendepunktbestimmung.


2. Möglichkeit über die Steigung (1. Ableitung)

Auswerten aufrufen mit:	oder im Hauptmenü: ⇒Auswerten ⇒ Äquivalenzpunkte (1. Abl.)								
	Empfindlichkeit	<u>0.662</u>	⇔ОК						
Ergebnis des Rechners: Volumen im Äquivalenzpunkt: 16,27 mL / zugehöriger pH-Wert: 9,06									
Einzeichnen des Äquivalenzpunk	tes <u>S</u> eichnen	Eintragen der Werte:	A Beschriften	Ende:	1	<u>F</u> ertig			

Bestimmung des pKs - Wertes: (Identifizierung als Ameisensäure)

Prinzip: Nach der Puffergleichung ist im Halbäquivalenzpunkt pH = pKs . Man muss sich vorher den Äquivalenzpunkt bestimmen lassen und notiert haben.

So kann die Säure auf Grund Ihres pKs- Wertes als Ameisensäure identifiziert werden.

Bestimmung des Gehaltes

Prinzip: Bei Äquivalenz gilt: n(HAc) = n(NaOH) also $c(HAc) \cdot V(HAc) = c(NaOH) \cdot V(NaOH)$ $c(HAc) = \frac{c(NaOH) \cdot V(NaOH)}{V(HAc)}$

Bestimmung des prozentualen Gehaltes

Die Dichte von reiner Ameisensäure beträgt 1,22 g/L. In 100 mL sind 1,627 * 46 /10 g Ameisensäure enthalten Unter Vernachlässigung der Dichte beträgt der Gehalt etwa 75 %.

Die Lösung müsste also mit einem **S** gekennzeichnet sein!

Entsorgung:

Literatur: