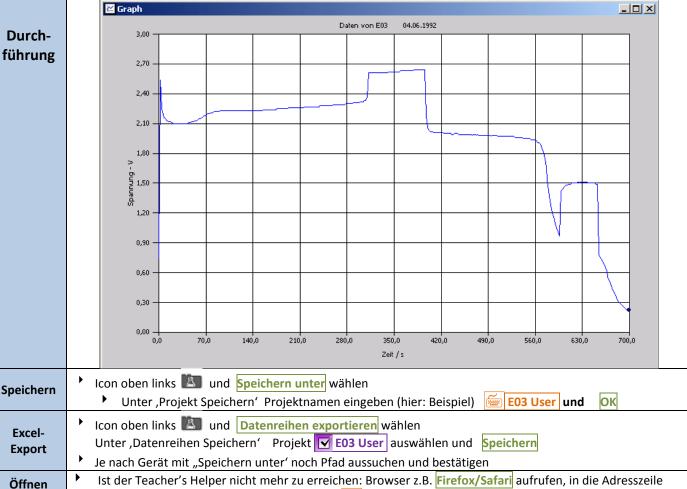

Laden und Entladen eines Bleiakkumulators

Prinzip

Die Spannungsverhältnisse beim Laden bzw. Entladen eines Bleiakkus, der meist benutzten wieder aufladbaren Batterie, soll untersucht werden.

Laden und Entladen eines Bleiakkumulators

1<u>. Lad</u>en:


- Am stabilisierten Netzgerät die Strombegrenzung auf 100 mA und eine Spannung von ca. 6 V voreinstellen.
- Mit dem Schalter den Stromkreis zum Netzgerät anschließen.
- Zur Messwertaufnahme bei 0,0s Aufzeichnung Starten drücken.
- An den Elektroden beobachtet man Veränderungen: Die als Kathode geschaltete Elektrode wird sehr schnell heller, während die andere eine dunkle bis braune Farbe annimmt.
- Spannung steigt während des Ladevorganges, obwohl die Stromstärke konstant bleibt.
- Schließlich tritt an den Elektroden eine verstärkte Gasentwicklung ein.

2. Entladen:

- Den Schalter zum Minuspol der Stromquelle öffnen und einige Zeit warten.
- Den Stromkreis mit dem Lämpchen anschließen und den Spannungsverlauf beim Entladen beobachten.
- Zwischendurch den Stromkreis unterbrechen und beobachten, wie sich der Akku "erholt".
- Nach ca. 700 s den Versuch Stoppen beenden.

bei **Bedarf**

Icon oben links 🔼 und Laden "Projekt Laden" E03 User direkt auswählen und →anklicken

(URL-Zeile) - nicht in der (Google-Suchzeile!!) [http://labor.ak eingeben. -

Laden und Entladen eines Bleiakkumulators

Prinzip

Auswertung

Beim Entladen bzw. Laden des Bleiakkus laufen folgende Reaktionen ab:

Entladen:

Anode (Minus-Pol): Pb(s) \rightleftharpoons Pb²⁺(aq) + 2 e⁻

Kathode (Plus-Pol): $PbO_2(s) + 4 H^+(aq) + 2 e^- \Rightarrow Pb^{2+}(aq) + 2 H_2O(l)$

Dabei bildet sich aus den entstandenen $Pb^{2+}(aq)$ und den anwesenden $SO_4^{2-}(aq)$ Ionen (aus der Schwefelsäure) schwerlösliches Bleisulfat $PbSO_4$.

Beim Laden kehren sich die Vorgänge entsprechend um:

Kathode (Minus-Pol): $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$

Anode (Plus-Pol): $Pb^{2+}(aq) + H_2O 2 (I) \rightleftharpoons PbO_2(s) + 4 H^+(aq) + 2 e^{-1}$

Tipps

- Man kann Messreihen mit verschiedenen Lade- bzw. Entladeströmen durchführen.
- Auch handelsübliche Akkus und Batterien können auf diese Weise untersucht werden.

 Entsorgung Nach Neutralisation in den Ausguss

Literatur

W. Asselborn et al., Messen mit dem Computer im Chemieunterricht, S. 50 ff, Aulis Verlag, Köln,1989 R. Nagel, Praktikums- und Demonstrationsversuche in der Sekundarstufe II, Fa. Phywe, Göttingen, 1984