


# Messung verschiedener Silberionenkonzentrationen





**Prinzip** 

Aus der Tatsache, dass die Silberionenkonzentrationen durch unterschiedliche Löslichkeitsprodukte und Komplexdissoziationskonstanten kontrolliert werden, lässt sich eine sehr schöne Versuchsreihe konzipieren.



- e) Greisinger Handgerät pH(GMH35XXX)
- f) LD Mobile Cassy+U/IAdapterS o. Che.-Box
- ☐ Teacher's Helper Netzteil/ USB Kabel
- ☐ Tablet, Laptop o. Smartphone
- ☐ Messzylinder, 100mL
- □ Waage

- ☐ Ag-Elektrode (Blech)
- ☐ Ag-Vergleichszelle
- ☐ AK-SÜS Elektrodenklotz
- ☐ Filtrierpapier
- ☐ 7 Messkolben, 100mL
- ☐ destilliertes Wasser

## Vorbereitung des Versuchs

- Jeweils 100 mL Lösung nach der Tabelle (Nr. 2-8) herstellen (pro Messreihe werden 10 mL benötigt!).
- Die Ammoniaklösung muss konzentrierter sein, damit das Silberchlorid sich vollständig umsetzt.

|   | Stoff                                                              | Masse für   | reagierender                                | reagierende Stoff- | Spannung |
|---|--------------------------------------------------------------------|-------------|---------------------------------------------|--------------------|----------|
|   |                                                                    | 100 mL Lsg. | Stoff                                       | menge in mol       | V        |
| 1 | direkt                                                             |             | (Ag <sup>+</sup> )                          | 0.0008             |          |
| 2 | KCI                                                                | 7.46 g      | Cl <sup>-</sup>                             | 0.01               |          |
| 3 | NH <sub>3</sub> -Lsg (25%) 🕏 🗘 🕸                                   | 75.6 mL     | NH <sub>3</sub>                             | 1.00*              |          |
| 4 | KBr                                                                | 11.90 g     | Br⁻                                         | 0.01               |          |
| 5 | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> · 5 H <sub>2</sub> O | 24.82 g     | S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> | 0.01               |          |
| 6 | KI                                                                 | 16.60 g     | I <sup>-</sup>                              | 0.01               |          |
| 7 | KCN 🕸 🕸                                                            | 6.51 g      | CN⁻                                         | 0.01               |          |
| 8 | Na <sub>2</sub> S · 9 H <sub>2</sub> O �� ��                       | 24.01 g     | s <sup>2-</sup>                             | 0.01               |          |



## Messung verschiedener Silberionenkonzentrationen





- Die Geräte entsprechend der Zeichnung (hier als Beispiel All-Chem-Misst II dargestellt) bereitstellen.
- In das 250 mL Becherglas 80 mL Silbernitratlösung (c = 0.01 mol/L) geben. Das entspricht 0,0008 mol.
- Das Becherglas mit der Vergleichselektrode mit der gleichen Lösung füllen.
- Beide Bechergläser durch eine Salzbrücke aus Filterpapier, mit Kaliumnitratlösung getränkt, verbinden.
- (Das "Vergleichsbecherglas" kann auch durch eine Kalomel- oder Silber-Argental-Elektrode ersetzt werden).
- Die Silberbleche mit Krokodilklemmen an die Kabel und diese an den Spannungseingang des "ALL-CHEM-MISST II" anschließen.

#### Vorbereitung an den Tablets/ Laptops (Clients)

- Am Tablet/ Laptop/ Smartphone Einstellungen oder mit WLAN eine Verbindung herstellen: ak.net anwählen und warten bis die Verbindung eingebucht ist.
- Browser z.B. FireFox/Safari aufrufen, in die Adresszeile (URL-Zeile) nicht in der (Google-Suchzeile!!) http://labor.ak eingeben. - Es erscheinen 3 Bildschirme ....
- Anschluss und Einschalten der Messgeräte
  - a) ACM II bzw. b) ACM II Junior mit Netzteil verbinden, dann nach 7 s!! über USB mit TH verbinden
  - c) AK MultiAdapter U/I bzw. d) Vernier Go!Link (mit EA-BTA) über USB mit TH verbinden
  - e) Greisinger GMH 35XXX über USB-Schnittstellenkonverter mit TH verbinden und mit "ON" anschalten Ein Spannungs-Wert (mV) muss zu sehen sein! Evtl. Fehler vorher beheben!
  - f) LD Mobile Cassy mit Messmodul und per USB TH verbinden und mit "Menü" anschalten oder Netzteil anschließen. Ein Spannungs-Wert muss zu sehen sein – sonst mit den Tasten "U" einstellen.
  - AK MiniAnalytik wählen. Im erscheinenden Bild können die Menüicons neben- oder (bei kleinen Bildschirmen) untereinander angeordnet sein.
- Icon 'Messen' (2. Von links) und Mit Messgerät verbinden (Gerätename) antippen.
- Messgrößen-Auswahl: Spannung (U)
- Konfiguration-Methode y-Achse U

Nachkomma



Der Messbildschirm wird aufgebaut und Werte angezeigt.

## Speichern

- Icon oben links 🔼 und Speichern unter wählen
  - Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) 🔯 E02 User und





### Excel-**Export**

- Icon oben links 🔊 und Datenreihen exportieren wählen Unter ,Datenreihen Speichern' Projekt 🗹 E02 User auswählen und Speichern
- Je nach Gerät mit "Speichern unter' noch Pfad aussuchen und bestätigen

#### Öffnen bei **Bedarf**

- Ist der Teacher's Helper nicht mehr zu erreichen: Browser z.B. Firefox/Safari aufrufen, in die Adresszeile (URL-Zeile) - nicht in der (Google-Suchzeile!!) [ http://labor.ak eingeben. -
- Icon oben links 💹 und Laden "Projekt Laden" E02 User direkt auswählen und →anklicken

## Durchführung

Entsprechend der Tabelle werden jeweils 10 mL der Lösung in das 250 mL Becherglas zugegeben und nach einer gewissen Wartezeit die Potenzialdifferenz abgelesen und notiert.

## Auswertung

Gemessen wurde gegen eine Kalomelelektrode (+ 0.28 V).

1. Berechnung des Potenzials der Vergleichszelle (falls man keine Kalomelelektrode benutzt hat).

Hat man eine Vergleichshalbzelle  $Ag/Ag^+$  ( $E_0 = 0.8 \text{ V}$ ; c = 0.01 mol/L) benutzt, erfolgt die Berechnung des Zellpotenzials nach der Nernstschen Gleichung:

$$E_1 = E_0 + \frac{0.059 \text{ V}}{\text{z}} \cdot \lg \frac{\text{c(Ag}^+)}{\text{c(Ag)}}$$



# Messung verschiedener Silberionenkonzentrationen





$$E_1 = 0.8 \text{ V} + 0.059 \text{ V} \cdot \text{ lg} \frac{0.01}{1} = 0.682 \text{ V}$$

#### 2. Berechnung der Silberionenkonzentrationen

Die Berechnung der Silberionenkonzentration erfolgt nach der Nernstschen Gleichung:

$$U = E_1 - E_2$$

$$U = E_1 - [E_{02} + 0.059 \text{ V} \cdot \text{lg c(Ag}^+)]$$

$$Ig c(Ag^+) = -\frac{\Delta U + U_1 - 0.8 \text{ V}}{0.059 \text{ V}} \text{ bzw.}$$

$$c(Ag^+) = 10^{-\frac{\Delta U + U_1 - 0.8 \text{ V}}{0.059 \text{ V}}} \text{mol/L}$$

Der Auswertung liegen folgende Messwerte zu Grunde. (Tabelle 2)

|   | reagierender                                | Spannung | Beispiel | berechnete              |
|---|---------------------------------------------|----------|----------|-------------------------|
|   | Stoff                                       |          | Spannung | lg(c(Ag <sup>+</sup> )) |
|   |                                             | V        | V        | mol/L                   |
| 1 |                                             |          | 0.41     | -1.86                   |
| 2 | Cl <sup>-</sup>                             |          | 0.03     | -8,31                   |
| 3 | NH <sub>3</sub>                             |          | -0.04    | -9.49                   |
| 4 | Br⁻                                         |          | -0.13    | -11.02                  |
| 5 | s <sub>2</sub> o <sub>3</sub> <sup>2-</sup> |          | -0.25    | -13.05                  |
| 6 | I-                                          |          | -0.35    | -14.75                  |
| 7 | CN <sup>-</sup>                             |          | -0.72    | -21.02                  |
| 8 | s <sup>2-</sup>                             |          | -0.85    | -23.22                  |

Die Konzentration der Silbersalzlösung vor jeglicher Zugabe (Reihe 1) war eigentlich c = 0.01 mol/L. Gemessen und daraus berechnet wurden aber  $c = 10^{-1.86}$  mol/L = 0.0138 mol/L.

### 3. Berechnung des Löslichkeitsproduktes von Silberchlorid

Reaktion:  $Ag^{+}(aq) + Cl^{-}(aq) \rightleftharpoons AgCl(s)$ 

Löslichkeitsprodukt:  $K_{I}(AgCI) = c(Ag^{+}) \cdot c(CI^{-})$ 

Die zugegebene Stoffmengen an Cl<sup>-</sup>-Ionen beträgt 0.01 mol (siehe Tabelle 1) bzw. die der vorgelegten Ag<sup>+</sup>- Ionen 0.01 mol/L·0.08 L = 0.0008 mol (siehe Tabelle 1). Die Reaktion soll für die Chloridionen in grober Näherung wegen des etwa 10 fachen Überschusses näherungsweise vollständig verlaufen.

$$\label{eq:c(Cl^-) = } \frac{n(Cl^-) - n(Ag^+)}{V(ges)} \; = \; \frac{0.01 mol - 0.0008 mol}{0.08 L + 0.01 L} = 0.102 \; \text{mol/L}$$

c(Ag+) = 
$$10 - \frac{0.03V + 0.28V - 0.8V}{0.059V}$$
 =  $10^{-8.31}$  mol/L (Tabelle 2)

$$K_{I}(AgCI) = 0.102 \text{ mol/L} \cdot 10^{-8.31} \text{ mol/L} = 4.996 \cdot 10^{-10} \text{ mol}^{2}/L^{2}$$

Literaturwert:  $1.56 \cdot 10^{-10} \text{ mol}^2/L^2$ 

#### 4. Berechnung der Stabilitätskonstanten des Silberdiamminkomplexes

Reaktion:  $[Ag(NH_3)_2]^+ \rightleftharpoons Ag^+(aq) + 2 NH_3(aq)$ 



## Messung verschiedener Silberionenkonzentrationen





$$K = \frac{c(Ag^{+}) \cdot c^{2}(NH_{3})}{c([Ag(NH_{3})_{2}]^{+})}$$

Die vorgelegte Stoffmenge an Ag<sup>+</sup>-Ionen beträgt 0.0008 mol. So viel sollte auch etwa an Diamminsilber entstanden sein. Die Stoffmenge des zugegebenen Ammoniaks beträgt etwa 1 mol (siehe Tabelle 1):

$$c(NH_3) = \frac{n(NH_3) - 2 \cdot n (Ag^+)}{V(ges)} = \frac{1 \, mol - 2 \cdot 0.0008 mol}{0.09 \, L + 0.01 \, L} = 9.984 \, mol/L$$

$$c(Ag^{+}) = 10^{-9.49} \text{ mol/L} \text{ (Tabelle 2)}$$

$$K = \frac{10^{-9.49} \text{ mol/L} \cdot 9,984^2 \text{ mol}^2/\text{L}^2}{0.0008 \text{mol/L}} = 4.03 \cdot 10^{-5} \text{mol}^2/\text{L}^2$$

Literaturwert:  $1.26 \cdot 10^{-7} \text{ mol}^2/L^2$ 

Für die weiteren Reaktionen gelten die Überlegungen zu den Rechnungen entsprechend.

#### 5. Berechnung des Löslichkeitsproduktes von Silberbromid

Reaktion:  $Ag^{+}(aq) + Br^{-}(aq) \rightleftharpoons AgBr(s)$ 

Löslichkeitsprodukt:  $K_1(AgBr) = c(Ag^+) \cdot c(Br^-)$ 

$$\mbox{c(Br$^-$) = } \frac{n(Br$^-$) - n(Ag$^+$)}{V(ges)} \ = \ \frac{0.01mol - 0.0008mol}{0.10L + 0.01L} \ = \ 0.0836 \ mol/L.$$

$$c(Ag^{+}) = 10^{-11.02} \text{ mol/L (Tabelle 2)}$$

 $K_{I}(AgBr) = 0.0836 \text{ mol/L} \cdot 10^{-11.02} \text{ mol/L} = 7.98 \cdot 10^{-13} \text{ mol}^{2}/L^{2}$ 

Literaturwert:  $2.51 \cdot 10^{-12} \text{ mol}^2/L^2$ 

### 6. Berechnung der Stabilitätskonstanten des Silberdithiosulfatokomplexes

Reaktion:  $[Ag(S_2O_3)_2]^{3-} \rightleftharpoons Ag^+(aq) + 2 S_2O_3^{2-}(aq)$ 

MWG:  $K = \frac{c(Ag^{+}) \cdot c^{2}(S_{2}O_{3}^{2^{-}})}{c([Ag(S_{2}O_{3})_{2}]^{3^{-}}}$ 

 $\mathsf{c(S_2O_3^{2-})} \,=\, \frac{n(S_2O_3^{2-}) - 2 \cdot n \; (Ag^+)}{V(ges)} \,\,=\, \frac{0.01 mol - 2 \cdot 0.0008 mol}{0.11 L + 0.01 L} \,\,=\, 0.082 \; \mathsf{mol/L}$ 

 $c(Ag^{+}) = 10^{-13.05} \text{ mol/L (Tabelle 2)}$ 

 $K = \frac{10^{-13.05} \, \text{mol/L} \cdot 0.082^2 \, \text{mol}^2 \, / \text{L}^2}{0.0008 \, \text{mol/L}} = 7.50 \, 10^{-13} \, \text{mol}^2/\text{L}^2$ 

Literaturwert:  $3.98 \cdot 10^{-13} \text{ mol}^2/L^2$ 

#### 7. Berechnung des Löslichkeitsproduktes von Silberiodid

Reaktion:  $Ag^{+}(aq) + I^{-}(aq) \rightleftharpoons AgI(s)$ 



# Messung verschiedener Silberionenkonzentrationen





Löslichkeitsprodukt:  $K_{I}(AgI) = c(Ag^{+}) \cdot c(I^{-})$ 

$$c(\Gamma) = \frac{n(\Gamma) - n(Ag^+)}{V(ges)} = \frac{0.1mol - 0.0008mol}{0.12L + 0.01L} = 0.763 \text{ mol/L}$$

$$c(Ag^{+}) = 10^{-14,75} \text{ mol/L (Tabelle 2)}$$

$$K_{I}(AgI) = 0.763 \text{ mol/L} \cdot 10^{-14.75} \text{ mol/L} = 1.36 \cdot 10^{-16} \text{ mol}^{2}/L^{2}$$

Literaturwert: 
$$1.0 \cdot 10^{-16} \text{ mol}^2/L^2$$

### 8. Berechnung der Stabilitätskonstanten des Silberdicyanokomplexes

Reaktion:  $[Ag(CN)_2]^- \rightleftharpoons Ag^+(aq) + 2 CN^-(aq)$ 

MWG: 
$$K = \frac{c(Ag^+) \cdot c^2(CN^-)}{c([Ag(CN^-)_2]^-)}$$

• 
$$c(CN^-) = \frac{n(CN^-) - 2 \cdot n (Ag^+)}{V(ges)} = \frac{0.1 mol - 2 \cdot 0.0008 mol}{0.13 L + 0.01 L} = 0.703 mol/L$$

$$c(Ag^{+}) = 10^{-21.02} \text{ mol/L (Tabelle 2)}$$

$$K = \frac{10^{-21.02} \,\text{mol/L} \cdot 0,703^2 \,\text{mol}^2 / L^2}{0.0008 \,\text{mol/L}} = 5.9 \, 10^{-19} \,\text{mol}^2 / L^2$$

Literaturwert:  $1.0 \cdot 10^{-21} \text{ mol}^2/\text{L}^2$ 

#### 9. Berechnung des Löslichkeitsproduktes von Silbersulfid

Reaktion:  $2 \text{ Ag}^+(\text{aq}) + \text{S}^2^-(\text{aq}) \rightleftharpoons \text{Ag}_2\text{S}(\text{s})$ 

Löslichkeitsprodukt:  $K_L(Ag_2S) = c(Ag^+) \cdot c(Ag^+) \cdot c(S^{2-})$ 

$$c(S^{2^{-}}) = \frac{n(S^{2^{-}}) - 0.5 \cdot n \; (Ag^{+})}{V(ges)} \; = \; \frac{0.01 mol - 0.5 \cdot 0.0008 mol}{0.14 L + 0.01 L} \; = \; 0.064 \; mol/L$$

$$c(Ag^{+}) = 10^{-23.22} \text{ mol/L (Tabelle 2)}$$

$$K_1(Ag_2S) = 0.064 \cdot 10^{-23.22} \cdot 10^{-23.22} = 2.32 \cdot 10^{-48} \text{ mol}^3/L^3$$

Literaturwert:  $1.0 \cdot 10^{-49} \text{ mol}^3/L^3$ 

| Beachten: | 0                                                                           | Entsorgung | Behälter für Schwermetalle |  |  |  |  |
|-----------|-----------------------------------------------------------------------------|------------|----------------------------|--|--|--|--|
| Literatur | tur 1. A. Voss, persönliche Mitteilungen                                    |            |                            |  |  |  |  |
| Literatur | 2. M. Braun, Die Nernstsche Gleichung, PdN Chemie, 20 S. 41ff, 1971         |            |                            |  |  |  |  |
|           | 3. F. Seel, Grundlagen der analytischen Chemie, Verlag Chemie, Weinheim 196 |            |                            |  |  |  |  |