


Elektrochemische Spannungsquellen AI/O₂ - "RedBull" -Batterie

Prinzip

Als Aluminium-Material bieten sich Getränkedosen oder Teelichter an (Achtung: die abgebildete Cola-Dose ist aus Weißblech! Als Elektrolyt kann Salzwasser dienen.

- Die Geräte entsprechend der Zeichnung (hier als Beispiel All-Chem-Misst II dargestellt) bereitstellen.
- Die Al-Dose an der Stelle, an der die Krokodilklemme angreifen soll, etwas aufrauen.
- Dose mit Salzwasser füllen.
- Krokodilklemmen anschließen, mit dem All-CHEM-MISST und den mit dem TH verbinden.
- Zusätzlich den AK Spezialmotor anschließen und sehen, ob die Getränkedosen-Batterie genügend Energie liefert.

Vorbereitung an den Tablets/ Laptops (Clients)

- Am Tablet/ Laptop/ Smartphone Einstellungen oder imit was eine Verbindung herstellen: ak.net anwählen und warten bis die Verbindung eingebucht ist.
- Browser z.B. FireFox/Safari aufrufen, in die Adresszeile (URL-Zeile) nicht in der (Google-Suchzeile!!) http://labor.ak eingeben. - Es erscheinen 3 Bildschirme
- Anschluss und Einschalten der Messgeräte
 - a) ACM II bzw. b) ACM II Junior mit Netzteil verbinden, dann nach 7 s!! über USB mit TH verbinden
 - c) AK MultiAdapter U/I bzw. d) Vernier Go!Link (mit EA-BTA) über USB mit TH verbinden
 - e) Greisinger GMH 35XXX über USB-Schnittstellenkonverter mit TH verbinden und mit "ON" anschalten Ein Spannungs-Wert (mV) muss zu sehen sein! Evtl. Fehler vorher beheben!
 - f) LD Mobile Cassy mit Messmodul und per USB TH verbinden und mit "Menü" anschalten oder Netzteil anschließen. Ein Spannungs-Wert muss zu sehen sein – sonst mit den Tasten "U" einstellen.

Elektrochemische Spannungsquellen Al/O₂ - "RedBull" -Batterie

- AK MiniAnalytik wählen. Im erscheinenden Bild können die Menüicons neben- oder (bei kleinen Bildschirmen) untereinander angeordnet sein.
- Icon 'Messen' (2. Von links) und Mit Messgerät verbinden (Gerätename) antippen
- Messgrößen-Auswahl: ✓ Spannung (U) OK
- ► Konfiguration-Methode y-Achse U

Nachkomma

2 und OK

Der Messbildschirm wird aufgebaut und Werte angezeigt.

Tipps	Wenn der Motor zum Stillstand kommt, kann die Kohle-Elektrode durch Schwenken an der Luft wieder mit Sauerstoff beladen und so die Reaktion wieder in Gang gebracht werden.
Auswer-	Vereinfacht: Aluminium gibt Elektronen an den Sauerstoff ab. Es entstehen Ionen
tung	-Pol: Elektronenabgabe (Anode - Oxidation): Al \rightarrow Al ³⁺ + 3e ⁻ +Pol: Elektronenaufnahme (Kathode- Reduktion): O ₂ + 4e ⁻ + 2 H ₂ O \rightarrow 4 OH ⁻ Elektronenübergang (RedOx): 4 Al(s) + 3 O ₂ (g) + 6 H ₂ O(l) \rightarrow 4 Al ³⁺ (aq) + 12 OH ⁻ (aq)
Beachten:	Entsorgung Ausguss / Dose kann wiederverwertet werden
Literatur	Autorenteam, Chemie? - Aber sicher!, 23-13, ALP, Dillingen 2011