Arbeitskreis Computer	Reagenzien für die qualitative	B 01
	anorganische Analyse	
im Chemieunterricht		Anorg. Analyse

Allgemeines:

Sofern nicht anders angegeben, wird die entsprechende Menge des Stoffes auf einer Uhrglasschale abgewogen, mit Hilfe eines Trichters in das vorgesehene Gefäß überführt und mit dem entsprechenden Lösungsmittel auf die angegebene Marke aufgefüllt. Nach Umrühren bzw. Umschütteln ist die Lösung in die saubere Reagenzienflaschen einzufüllen.

Hinweis: Da bei den folgenden Versuchen häufig mit konzentrierten bzw. ätzenden Stoffen umgegangen wird, empfiehlt sich die Benutzung einer Schutzbrille.

Benutzte Abkürzungen:

M mol/L BG Becherglas MZ Messzylinder E Ersatzstoff nur für den genau VG Voratsgefäß ges. gesättigt darüberstehenden Stoff MK Messkolben

Lösung	Konz. Etikett	Menge	Stoff	Größe	Gefä ß	Lösungs- mittel
Ammoniak-Lösung	2 M	375 mL	Ammoniak-Lösg. 25%)	2,5 1	VG	Wasser
Ammoniakalische	-	22.5 g	Na ₂ HPO ₄ * 12 H ₂ O oder	250 mL	BG	Wasser
Phosphat-Lösung		E: 8.92 g	E: Na ₂ HPO ₄			
		32,5 g	NH ₄ Cl			
	_	50 mL	Ammoniak-Lösg. 25%)		l	
Ammonium-molybdat- Lösung	verd.	10 g	Ammoniumheptamolybdat	100 mL	MZ	H ₂ SO ₄ c=2 mol/L
Ammonium-tartrat-Lsg	verd.	37 g	$(NH_4)_2C_2H_4O_6$	100 mL	BG	Wasser
Bariumchlorid-Lösung	1 M	122,15 g	BaCl ₂ *2H ₂ O ■ oder	500 mL	MK	Wasser
		E: 104 g	E: BaCl ₂			
Bleinitrat-Lösung	1 M	69,775 g.	PbNO ₃	250 mL	MK	Wassser
Bromthymolblau-	1 %	2,5 g	Bromthymolblau	250 mL	BG	Wasser
Lösung		175 mL	Ethanol			
Calciumhydroxidlösung	ges.	20 g	Ca(OH) ₂	1000 mL	1)	Wasser
Dimethylglyoxim	1 %	1,0 g	DMG	100 mL	MZ	Ethanol
Essigsäure, verd.	2 M	126 mL	Eisessig	1000 mL	BG	Wasser
Fehlingsche-Lösung I	-	70 g	CuSO ₄ · 5H ₂ O ■	1000 mL	BG	Wasser
Fehlingsche-Lösg II X	-	346 g 100 g	KNaC ₄ H ₄ O ₆ NaOH ■	1000 mL	2)	Wasser
Iod-Kaliumiodid-		1,3 g	I ₂	100 mL	В	Wasser
Lösung		2,0 g	KI			
Kaliumchromat-Lsg. Ξ	0,5 M	49 g	K ₂ CrO ₄	250 mL	В	Wasser
Kaliumhexacyanoferrat-	0,25M	10,5 g	$K_4[Fe(CN)_6]_3$	100 mL	В	Wasser
(II)-Lösung						
Kaliumnitratlösung	1 M	27,78 g	KNO ₃	250 mL	MK	Wasser
Kaliumpermanganat-	0.10M	50 mL	1M KMnO ₄ -Lösung	500 mL	MK	Wasser
Lösung		E:				
Kalium-thiocyanat-	0,5 M	5 g	KSCN	100 mL	BG	Wasser
Lösung						

¹⁾ Das Calciumhydroxid in eine 1 Liter -Flasche geben, verschließen, schütteln und 2 Tage stehen lassen. Die überstehende klare Lösung wird ohne Verwirbelung in die Reagenzienflasche abgegossen.

Arbeitskreis Computer	Herstellen häufig benötigter Lösungen	B 01
im Chemieunterricht		Seite 2 / 2

2) Achtung stark alkalische Lösung! Wird heiß und ist ätzend! Schutzbrille!!

Lösung	Konz. Etikett	Menge	Stoff	Größe	Gefäß	Lösg mittel
Kobaltnitrat-Lösung	0.02 %	0,1 g	CoNO ₃	500 mL	BG	Wasser
Kupfersulfatlösung	1 M	124,84 g	CuSO ₄ · 5H ₂ O ■	500 mL	MK	Wasser
Lackmus-Lösung	0,2%	0,2 g	Lackmus	100 mL	MZ	Ethanol
Lunges Reagenz 1		1,0 g	Sulfanilsäure X	100 mL	BG*)	Wasser
		30 mL	Eisessig			
Lunges Reagenz 2		0,3 g	Naphtylamin X	100 mL	BG*)	Wasser
		30 mL	Eisessig			
Magnesiumsulfat-	1 M		MgSO ₄	250 mL	MK	Wasser
Lösung			_			
Methylorange-Lösung	0,1 %	0,5 g	Methylorange S	500 mL	BG	Wasser
Natriumchlorid-Lösung	1 M	29,22 g	NaCl	500 mL	MK	Wasser
Natriumhydroxid-	0.1 M	100 mL	NaOH-Lsg (c= 1mol/L)	1000	MK	Wasser
Lösung				mL		
Natriumhydroxid - X	verd.	200 g	NaOH 🔀	2,5 1	VG	Wasser
Lösung						
Phenolphthalein-Lösung	1%	5g	Phenolphthalein	500 mL	BG	Wasser
		300 mL	Ethanol			
Salpetersäure, verd. Ξ	verd.	73 mL	HNO ₃ konz (65 %)	500 mL	MZ^2)	Wasser
Salzsäure, verd.	verd.	485 mL	HCl 37 %	2,5 1	VG ³⁾	Wasser
Seifenlösung		0,5 g	Kernseife	500 mL	В	Wasser
Schwefelsäue, verd. Ξ	verd.	128 g	H ₂ SO ₄ 96 % ■	2,5 1	VG ⁴⁾	Wasser
Stärke-Lösung		500 mL	NaCl -Lösg, gesättigt	500 mL	BG ⁵⁾	Wasser
		80 mL	Eisessig			
		3,0 g	lösl. Stärke			
Wasserstoffperoxid-	3 %	10 mL	H ₂ O ₂ -Lösung 30 % ■	100 mL	BG	Wasser
Lösung						
Zinksulfat-Lösung	1 M	71,88 g	$ZnSO_4 \cdot 7H_2O$	250 mL	MK	Wasser

^{*)} erwärmen

- 1) Das Natriumhydroxid wird in einem 2 Liter Becherglas in etwa 1,5 l Wasser unter Rühren gelöst! Vorsicht, Hitze, ätzend! Nach dem Abkühlen wird in das Vorratsgefäß umgegossen und aufgefüllt.
- 2) Es werden etwa 400 mL Wasser vorgelegt, unter Rühren vorsichtig die Säure zugegeben und nach dem Abkühlen aufgefüllt.
- 3) Es werden ca. 1 l Wasser schon in das Vorratsgefäß gegeben, die Säure vorsichtig zugesetzt und nach dem Abkühlen erst aufgefüllt.
- 4) In einem 2 l Becherglas werden etwa 0,5 l Wasser vorgelegt. Dann wird äußerst vorsichtig die Säure zugegeben, nach dem Abkühlen in das Vorratsgefäß überführt und bis zur Marke aufgefüllt.
- 5) Die Stärke wird mit ganz wenig Wasser in einer Reibschale zu einem konsistenten Brei verrieben, in ein 600 mL Becherglas mit siedendem Wasser und Eisessig gegeben und einige Minuten weitererhitzt. Nicht lösliche Anteile lässt man absitzen.