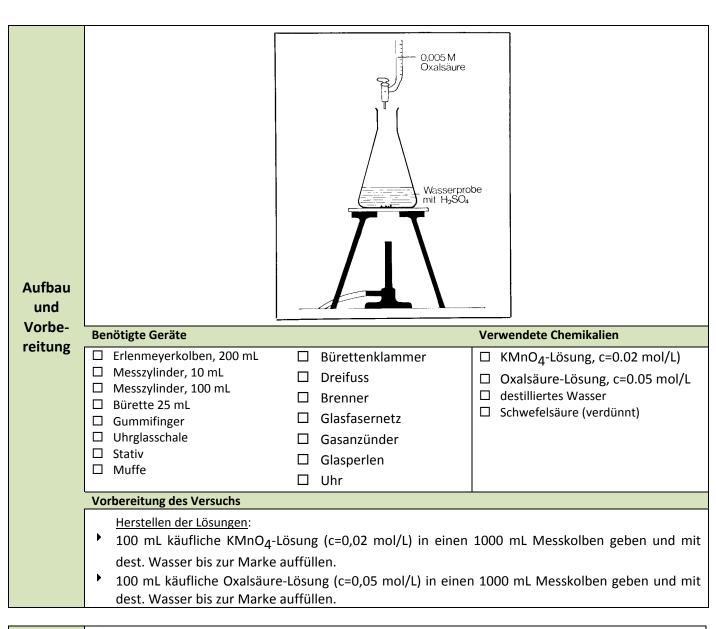
Bestimmung des Kaliumpermanganatverbrauchs



C04

Prinzip

Mit Hilfe des Kaliumpermanganat- $(KMnO_4)$ -Verbrauchs eines natürlichen Gewässers lässt sich auch dessen Verschmutzungsgrad bestimmen. Dabei werden die organischen Verunreinigungen oxidiert. Der Verbrauch an Oxidationsmittel $(KMnO_4)$ lässt auf den Grad der Verschmutzung schließen.

Durchführung

- Mit Hilfe des Messzylinders 100 mL der Wasserprobe in den Erlenmeyerkolben füllen.
- Dazu 10 mL verdünnte Schwefelsäure geben.
- Um gleichmäßiges Sieden zu erreichen, einige Glasperlen zugeben und anschließend den Kolbeninhalt zum Sieden bringen.
- Dabei sollte der Kolben mit Hilfe eines Uhrglases zugedeckt werden.
- ▶ Dann 20 mL der KMnO₄-Lösung hinzugeben.
- Die Lösung 10 Minuten zum gerade erkennbaren Sieden erhitzen.
- Den Kolben mit Gummifingern vom Dreifuß nehmen, noch heiß mit 20 mL Oxalsäure (c=0,005 mol/L) versetzen und die Lösung mit KMnO₄-Lösung (c=0,002 mol/L) bis zur ersten 30 Sekunden bestehenden Rosafärbung titrieren. Dabei das Gefäß gut umschütteln.

www.kappenberg.comMaterialienMaßanalyse Titration10/20111

Bestimmung des Kaliumpermanganatverbrauchs

C04

Berechnung des Permanganat-Verbrauchs:

Bei der Wasseranalyse wird der Permanganatverbrauch in mg/L bezogen auf KMnO_4 angegeben.

1 mL KMnO₄-Lösung (c= 0.002 mol/L) enthält 158,04 \cdot 0.002 = 0,32 mg KMnO₄.

Auswertung

Für 100 mL Wasserprobe und X mL Verbrauch ergibt sich entsprechend folgender Permanganat-Verbrauch pro Liter:

 $KMnO_4$ -Verbrauch = X * 10 * 0,32 [mg/L]

Beurteilung des KMnO₄-Verbrauchs:

Verbrauch an KMnO ₄ (mg/L)	Beurteilung
0 - 10	sehr sauber
10 - 20	fast sauber
20 - 35	leicht verschmutzt
35 - 60	stark verschmutzt
60 - 100	sehr stark verschmutzt
100 - 250	abwasserähnlich
250 - 1000	ungeklärtes Abwasser

Beachten:	0	Entsorgung	Ausguss

Literatur	F. Kappenberg, Chemische Wasseranalysen in der Schule Seite 57f, Münster 1980
	W.Jansen, M.Kern, B.Flintjer, R.Peper, Elektrochemie Seite 87, Aulis Verlag, Köln 1982

www.kappenberg.com	Materialien	Maßanalyse Titration	10/2011	2	
--------------------	-------------	----------------------	---------	---	--