Arbeitskreis Computer im Chemieunterricht

Bestimmung der Calcium - und Magnesium - Ionen (Gesamthärte von Wasser) durch Komplexbildung

C 06 Maßanalyse

Prinzip:

Viele Metalle, so die Erdalkali - Ionen bilden mit Ethylen - Diammin - Tetra - Essigäure stabile Komplexe. Der Äquivalenzpunkt wird durch einen Indikator, der selbst einen (schwächeren) Komplex bildet, angezeigt.

Materialliste:

Geräte: Chemikalien: Erlenmeyerkolben,200 mL Dreifuß KOH-Lösung (c= 2 mol/L) Ξ Meßpipette, 5 mL Glasfasernetz Universalindikatorpapier 1 1 Meßzylinder, 100 mL 1 Glasstab Calconcarbonsäure 1 Bürette EDTA-Lösung, 1 1 Gasanzünder Wasserstoffperoxid -Bürettenklammer, Plastik X lösung (30%) 1 Magnetrührer Salzsäure verd. IndikatorPuffertabletten zur 1 Rührfisch

Bunsenbrenner, Härtebestimmung

Ammoniak-Lösung (konz) X Natriumsulfat

Vorbereitung des Versuches:

Herstellung der Komplexbildner-Lösung:. z.B.: käufliche Triplex B-Lösung. Man kann auch 89.3 mL käufliche Titriplex A - Lösung in einem 500 mL Meßkolben bis zur Marke mit dest. Wasser auffüllen. Herstellung des Indikators: ca. 0.01g Calconcarbonsäure werden mit etwa 10g Na₂SO₄ im Mörser zerrieben.

Durchführung des Versuches:

Calciumbestimmung:

100 mL der zu untersuchenden Wasserprobe werden in den 200 mL Erlenmeyerkolben eingemessen und vorsichtig mit 2-4 Tropfen KOH - Lösung auf einen pH-Wert von ungefähr 12-14 gebracht. Dieser Wert ist mit dem Indikatorpapier zu überprüfen. Es werden etwa 3-5 Minuten zur vollständigen Abscheidung von Mg gerührt und nach Zugabe einer Spatelspitze des Indikators aus Calconcarbonsäure und Na₂SO₄ mit der EDTA-Lösung bis zum Farbumschlag von wein-rot nach rein-blau titriert.

Magnesiumbestimmung:

Die aus der Calciumbestimmung titrierte Wasserprobe wird zur Zerstörung des Indikators nach Zugabe von 1 mL Wasserstoffperoxid - Lösung solange erhitzt, bis sie farblos geworden ist. Daraufhin wird soviel verdünnte Salzsäure zugegeben, bis sich alle Magnesiumhydroxid - Flocken aufgelöst haben. Nach Zugabe von 2 mL konzentrierter Ammoniak - Lösung und der Indikatorpuffertablette wird mit der EDTA - Lösung (Triplex B) bis zum Farbumschlag von rot über grau nach grün titriert.

Auswertung des Versuches:

Hinweis Ein Grad deutscher Härte (°dH) entsprechen 10 mg Calciumoxid (CaO) in 1 L Wasser. Molmassen: Ca 40,08 g/mol, CaO 56,08 g/mol - 10 mg CaO entsprechen 10 / 56,08 = 0.178 mol/L Ca

Berechnung des Magnesiumgehaltes

Die Gesamthärte in Grad °dH entspricht dem Verbrauch am Komplexbildner EDTA (Triplex B-Lösung) in mL. 1 mL der EDTA-Lösung entspricht bei Anwendung von 100 mL Probewasser 1 Grad °dH.

Die Ergebnisse müssen mit 0.178 und 24,312 = 4,37 multipliziert werden, um eine Angabe in mg/L Magnesium zu

1 mL Triplex B-Lösung entspricht also 4,37 mg/ Mg²⁺ in 1L Wasser

Berechnung des Calciumgehaltes

Arbeitskreis Computer	Bestimmung der Calcium - und Magnesium - Ionen	C 06
im Chemieunterricht	(Gesamthärte von Wasser) durch Komplexbildung	Seite 2 / 2

Die Triplex - Lösung B ist bei der Anwendung von 100 mL so eingestellt, daß 1 mL dieser Lösung genau 1 Grad °dH entspricht. Die Ergebnisse müssen mit 0.178 und 40,082 = 7,13 multipliziert werden, um eine Angabe in mg/L Calcium zu erhalten.

1 mL Triplex B-Lösung entspricht also 7,13 mg Ca²⁺ in 1L Wasser

Achtung: Das für Magnesium verbrauchte Volumen muß vorher abgezogen werden.

Angabe der Gesamthärte (genauer Erdalkali-Härte)

Die Titriplex-Lösung ist so bemessen, daß der Verbrauch in mL (bei Anwendung einer 100 mL Probe) direkt der Härte in $^{\circ}$ dH entspricht.

Achtung:

Ist die Carbonathärte größer als die Gesamthärte (aus den Erdalkalien), so ist die Carbonathärte als Gesamthärte anzugeben.

Einteilung der Wässer nach Härtegraden

°dH	Beurteilung	
0 - 4	sehr weich	
4 - 8	weich	
8 - 12	mittelhart	
12 - 18	ziemlich hart	
18 - 30	hart	
> 30	sehr hart	

Literatur: F. Kappenberg, Chemische Wasseranalysen in der Schule, Seite 49 ff, Münster 1980