
Aufnahme einer Strom-Spannungskurve bei der Elektrolyse von Schwefelsäure

Prinzip

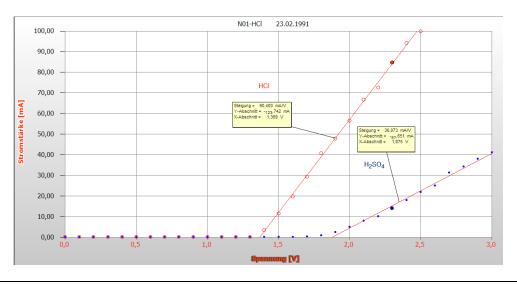
Schwefelsäure wird zwischen zwei Platinelektroden elektrolysiert. Dabei wird mit U = 0 V beginnend die Elektrolysierspannung ständig erhöht und die zugehörige Stromstärke gemessen. Die Zersetzungsspannung wird 'grafisch' ermittelt.

Aufnahme einer Strom-Spannungskurve bei der Elektrolyse von Schwefelsäure

N01B

Durchführung

Achtung: Man darf besonders in der Startphase die Spannung nicht zurückdrehen, da sich sonst ein galvanisches Element aufbaut!


- Zur Messwertaufnahme bei 0,0 V Einzelwert oder besser 'Leertaste'.
- Danach die Spannung um jeweils U = 0,1 V (beliebig) erhöhen und den Messwert mit Einzelwert oder besser mit 'Leertaste' speichern.
- Bei Erreichen von 3 V mit Klick Messung beenden d.
- Projektname eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren

Wie wir wissen, gilt für die Elektrolyse in weiten Bereichen das ohmsche Gesetz: Spannung und Stromstärke sind zueinander direkt proportional. Nur zu Beginn der Elektrolyse verwischen die abgeschiedenen Gase mit ihrer Polarisationsspannung die Proportionalität. Die zuständige Spannung (Zersetzungsspannung) wird durch Extrapolation des proportionalen Teils für y= 0,0 mA ermittelt.

- Folgen Sie den Anweisungen: Mit Maus oder Finger links auf den ersten Punkt der Datenreihe, durch die die Ausgleichsgerade gelegt werden soll, tippen, gedrückt halten und ziehen bis zum rechten Punkt und loslassen
- Berechnen anklicken.

Der x-Abschnitt (experimentell ermittelte Zersetzungsspannung), der **y-Abschnitt** und die Steigung werden angegeben.

Zusatzinfo

Die Normalpotentiale bei pH= 0 betragen: $E^0(H_2/H^+) = 0.0V$, $E^0(H_2O/O_2) = 1.23$

Nach theoretischen Überlegungen müssten sich Wasserstoff und Sauerstoff bei 1,23 V abscheiden. Wie man bei der Elektrolyse von Schwefelsäure erkennen kann, entstehen Wasserstoff und Sauerstoff erst ab 1,9 V. Die Differenz aus der experimentell ermittelten und der theoretischen Zersetzungsspannung ist die Überspannung. Sie rührt daher, dass die an den Elektroden entstehenden Gase ein Hindernis für die zu den Elektroden wandernden Ionen darstellen. Dieses Hindernis muss mit höherer Spannung überwunden werden.

Sie ist abhängig vom Material und Oberfläche der Elektroden, von der Art und der Konzentration des Elektrolyten, von der Temperatur und der Stromdichte (Stromstärke pro Elektrodenfläche). Typische Überspannungen an blankem Platin (ohne Berücksichtigung der Stromdichte):

 $E^{U}(H_2) = -0.16V, E^{U}(O_2) = 0.95 V.$

Zersetzungsspannung: $E^{Z}(O_{2}/H_{2})=(1,23 \text{ V}+0.95 \text{ V})-(0.0 \text{ V}+-0.16 \text{ V})=2.18 \text{ V}$

Beachten: Entsorgung Ausguss evtl. nach Neutralisation

Literatur R. Nagel, Praktikumsversuche zur Chemie für die gymnasiale Oberstufe, S.: 4ff, Phywe AG, Göttingen, 1978

www.kappenberg.comMaterialien2 Kanal-Messungen10/20112