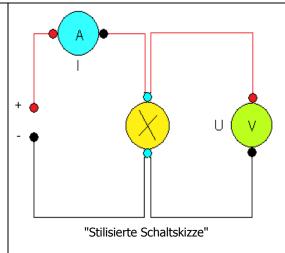
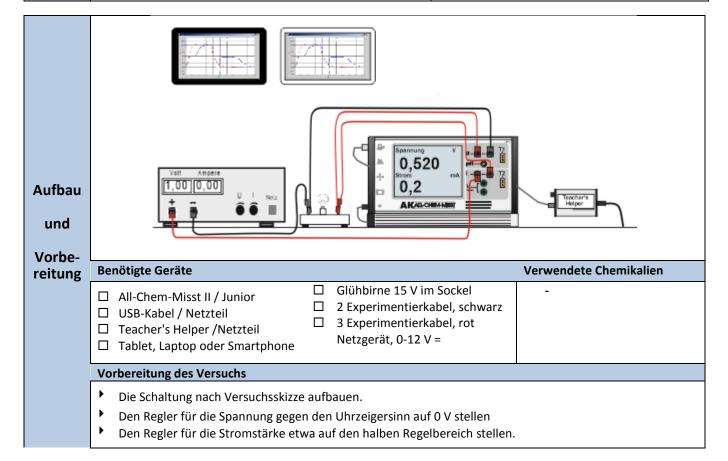
——**AK**——Kappenberg

Aufnahme der Strom-Spannungskurve einer Glühbirne

Prinzip

In dieser Vorübung (Variante zu Arbeitsblatt D01) wird eine elektrische Schaltung zur Messung von Spannung und Stromstärke beim Betrieb eines Lämpchens aufgebaut und betrieben. Dabei werden die Messmethoden, Schaltungsaufbauten und Zusammenhänge zwischen Spannung, Stromstärke, Widerstand, Leitfähigkeit und Leistung für spätere chemische Untersuchungen eingeübt.


Zur Messung der elektrischen Leitfähigkeit von Lösungen wird das Lämpchen später gegen einen Leitfähigkeitsprüfer ausgetauscht und mit einer konstanten Wechselspannung betrieben.


- Die benötigte Spannung entnehmen wir einem elektronisch geregelten Netzgerät, das die gefährliche Netzspannung für uns umformt.
- Das Netzgerät besitzt eine **rote Buchse = "Plus-Pol"** und eine **schwarze Buchse = "Minus-Pol"**.

Allgemeine

Hinweise

- Mit den beiden Drehknöpfen kann man einmal die Spannung U in V(olt) und zum anderen die Stromstärke I in A(mpere) einstellen.
- Wenn der ALL-CHEM-MISST <u>Spannung</u> messen soll, wird er immer <u>"parallel"</u> zum Verbraucher angeschlossen (ist praktisch ein eigener Stromkreis; Messbereich: <u>V</u>, Buchsen: <u>U</u>).
- Wenn der ALL-CHEM-MISST <u>Stromstärke</u> messen soll, wird er <u>"in Serie (Reihe)"</u> mit dem Verbraucher angeschlossen (in den Stromkreis mit eingefügt; Messbereich: <u>mA</u>, Buchsen: <u>I.</u>)

 www.kappenberg.com
 Materialien
 2 Kanal-Messungen
 10/2011
 1

Aufnahme der Strom-Spannungskurve einer Glühbirne

Vorbereitung an den Tablets/ Laptops (Clients)

- Am Tablet/ Laptop/ Smartphone Einstellungen oder mit WLAN eine Verbindung herstellen: ak.net anwählen und warten bis die Verbindung eingebucht ist.
- Browser z.B. FireFox/Safari aufrufen, in die Adresszeile (URL-Zeile) nicht in der (Google-Suchzeile!!)

 http://labor.ak eingeben. Es erscheinen 4 Bildschirme

ОК

- AK MiniAnalytik wählen. Im erscheinen Bild können die Menüicons neben- oder (bei kleinen Bildschirmen) untereinander angeordnet sein.
- Icon 'Messen' (2. Von links) und Mit Messgerät verbinden auswählen
- Messgrößen-Auswahl: ✓ Spannung (U) ✓ Strom (I) OK
- Konfiguration X/Y-Achsen: Lauf Y-Achse, U auf Y-Achse
- Konfiguration-Methode y-Achse: I Min

 I Nachkomma

 I und

 I-Max. 150,0 mA

 Linie

 I-Max. 150,0 mA

 Linie

 I-Max. 10,0 V
- U Nachkomma

 Messen mit Tastendruck OK

Durchführung

- Zur Messwertaufnahme bei 0,0 V Messwert Aufzeichnen oder besser die 'Leertaste' drücken.
- Danach die Spannung um jeweils U = 0,5 V (beliebig!) erhöhen und dabei Messwert Aufzeichnen .
- ▶ Bei Erreichen von 12 V Messung beenden

Das ist die Ausgangsdatenreihe für die folgenden Auswertungen

Speichern

- Icon oben links und Speichern unter wählen
 - Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) NO1 User und

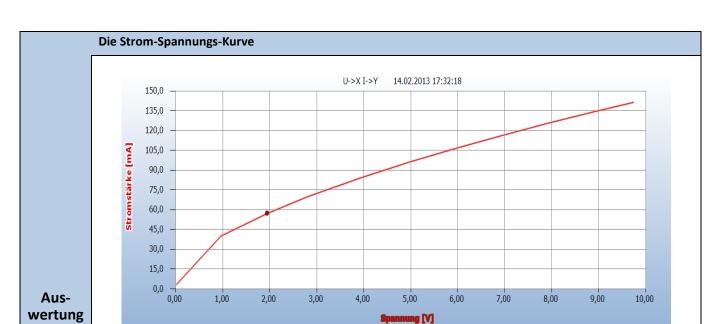
Excel-Export

- Icon oben links und Datenreihen exportieren wählen
 Unter ,Datenreihen Speichern' Projekt N01 User auswählen und Speichern
- Je nach Gerät mit "Speichern unter' noch Pfad aussuchen und bestätigen!

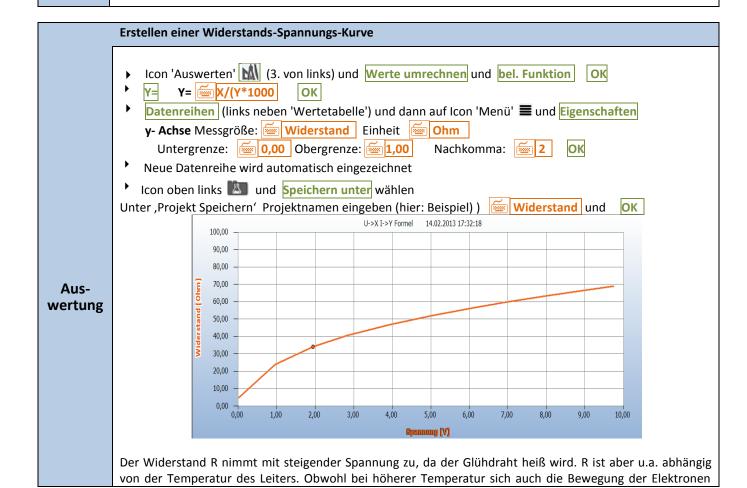
Öffnen bei Bedarf

- Ist der Teacher's Helper nicht mehr zu erreichen: Browser z.B. FireFox/Safari aufrufen, in die Adresszeile (URL-Zeile) nicht in der (Google-Suchzeile!!) http://labor.ak eingeben. -
- lcon oben links und Laden "Projekt Laden" N01 User direkt auswählen und →anklicken

Das ist die Ausgangsdatenreihe für die folgenden Auswertungen


www.kappenberg.comMaterialien2 Kanal-Messungen10/20112

Aufnahme der Strom-Spannungskurve einer Glühbirne



Die Strom-Spannungs-Kurve (Kennlinie) einer Glühbirne soll in einem weiteren Versuchen (z.B. Arbeitsblatt N01A/B) mit der eines chemischen Systems verglichen werden.

In dieser Grafik sieht man, dass immer, wenn U>0 V, ein Strom fließt. Wird U vergrößert, so wächst I nicht linear nach dem Ohmschen Gesetz sondern weniger stark, weil die Temperatur des Glühfadens zunimmt.

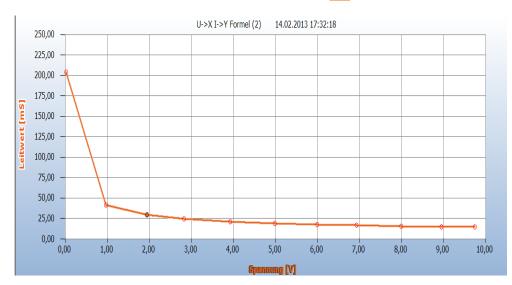
www.kappenberg.comMaterialien2 Kanal-Messungen10/20113

Aufnahme der Strom-Spannungskurve einer Glühbirne

erhöht, steigt der Widerstand (= sinkt die Stromstärke), da gleichzeitig die Metallatomrümpfe stärker um ihre Ruhelage schwingen und so den Elektronenfluss behindern.

Aus praktischen Gründen interessiert den Chemiker weniger der Widerstand einer Lösung sondern dessen Leitfähigkeit.

Erstellen einer Leitfähigkeit-Spannungs-Kurve


- ▶ Icon 'Auswerten' (3. von links) und Werte umrechnen und bel. Funktion OK
- Y= Y= <u>Y/X</u> OK
- Datenreihen (links neben 'Wertetabelle') und dann auf Icon 'Menü' und Eigenschaften
 - y- Achse Messgröße: Leitwert Einheit ms

Untergrenze: 0,00 Obergrenze: 1,00 Nachkomma: 0K

- Neue Datenreihe wird automatisch eingezeichnet
- lcon oben links und Speichern unter wählen

Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel)) Eitwert und OK

Auswertun g

Der Leitwert G ist der Kehrwert des elektrischen Widerstandes (G = 1/R). Die Einheit ist $1/\Omega$ oder beim Chemiker meist: 1 S (Siemens; meist: mS oder μ S). Die Leitfähigkeit spielt für den Chemiker bei der Untersuchung und Beurteilung von Elektrolyten die entscheidende Rolle.

Mit zunehmender Spannung wird der Widerstand größer (s. Grafik N01A-b)). Wächst aber der Widerstand R, dann wird der Leitwert G nach G = 1/R kleiner. Der Draht in der Glühlampe ist somit bei höherer Temperatur ein schlechterer Leiter als bei niedriger Temperatur.

In Lösungen dagegen bewegen sich die Ionen bei höherer Temperatur schneller.

Beachten: Entsorgung entfällt

Literatur

www.kappenberg.comMaterialien2 Kanal-Messungen10/20114