
Bestimmung der Reaktionsenthalpie von Kupferionen mit Zink

Prinzip

Die Wärmemenge, die entsteht, wenn man einen Überschuss von Zink auf eine Kupfersalzlösung einwirken lässt, wird gemessen.

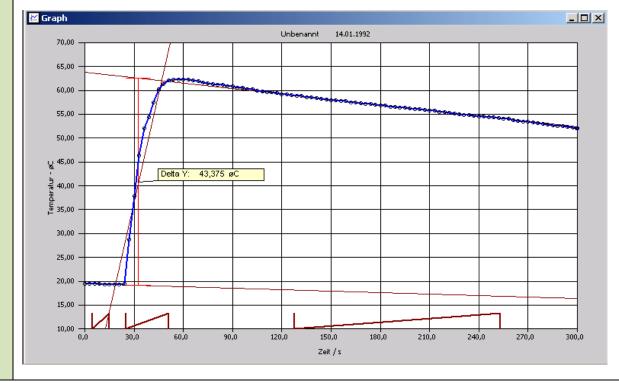
Bestimmung der Reaktionsenthalpie von Kupferionen mit Zink

Durchführung

- Mit Aufzeichnen oder mit der 's'-Taste die Messwertspeicherung starten.
- Danach das Metall in den Styroporbecher geben.
- Nach ca. 300 s Messung beenden drücken.
- Projektnamen eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren

Bestimmung der Temperaturdifferenz

Die Reaktion des Metalls mit den Metallionen erwärmt die Salzlösung (die Wärmekapazität wird mit der des Wassers, c_W= 4.187 J/g·K, gleichgesetzt) und das Kalorimeter. Dabei wird eine bestimmte Wärmemenge Q frei.


$$Q = Q_W + Q_{Kal}$$

$$Q = (c_W \cdot m_W + W_{Kal}) \cdot \Delta T$$

Die Wärmemenge, die das entstehende Metall aufnimmt, wird vernachlässigt. Die Bestimmung der Temperaturdifferenz erfolgt nach der Drei-Geraden-Methode.

- Hauptmenü: AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen 3-Geraden-Methode
- Folgen Sie den Anweisungen (mit 'Abhaken') 1. für die Vorperiode, 2. Hauptperiode und 3. Nachperiode
- Zur Prüfung des Ergebnisses Zeichnen dann Delta (evtl. Position ändern) und Fertig

Bestimmung der Reaktionsenthalpie von Kupferionen mit Zink

Berechnen der Reaktionswärme:

Für die Beispielrechnung werden folgende Werte verwendet:

- Temperaturerhöhung $\Delta \vartheta = 43.375$ °C,
- Masse der Metallsalzlösung m = 50 g,
- Wasserwert W_{Kal} = 25.48 J/K)

Favoriten im Hauptmenü AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen

Rechner Termeingabe: (50*4,187+25,5)*43,375

Auswertung

Als Ergebnis liefert der Rechner für m(Salzlösung) = 50 g:

$$Q = -10186 J$$

Die Umrechnung auf molare Bedingungen: n(Cu) = 0.05 mol

$$\Delta H^0 = \Delta H \cdot \frac{1}{n}$$

- Favoriten im Hauptmenü AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen
 - Rechner Termeingabe: 10186/0,05))

Die molare Reaktionsenthalpie $\Delta H^0 = -203720 \text{ J/mol} = -203,7 \text{ kJ mol}^{-1}$.

Literaturwert:

$$Cu^{2+}_{(aq)} + Zn_{(s)} --> Cu_{(s)} + Zn^{2+}_{(aq)}$$

$$\Delta H^0 = -216.7 \text{ kJ mol}^{-1} 1$$

Tipps

- Das kräftige Umrühren scheint bei diesem Versuch besonders wichtig. Benutzen Sie einen Magnetrührer mit einem kräftigen Rührfisch.
- Je feiner das eingesetzte Metallpulver ist, umso vollständiger und schneller erfolgt der Umsatz der Metallio-
- Ein Spritzer Spülmittel kann eine bessere Benetzung des Metalls bewirken.
- Man kann bei den Versuchen auch geringere Mengen einsetzen: z.B. 50 mL Kupfersulfatlösung (c = 0.5 mol/L). Die zu erwartenden Temperaturänderungen beim Zink sind dann etwa 25 °C.
- Evtl. sollte man hier dann mit einem Glasstab umrühren. Andererseits ist bei dieser Reaktionsführung das Verschwinden der blauen Farbe besonders gut zu beobachten.

Beachten:

Entsorgung

Behälter für Schwermetalllösungen

Literatur

- 1) M. Wainwright, Chemische Ernergetik S.: 11f, 1979, B. Franzbecker Verlag, Bad Salzderfurth
- 2) F. Kappenberg, Computer im Chemieunterricht 1988, S. 147 f, Verlag Dr. Flad, Stuttgart