
Bestimmung der Kondensationswärme von Wasser

Prinzip

Wasserdampf wird in das Kalorimeter geleitet, die entsprechende Temperaturerhöhung gemessen und die zugehörige Enthalpieänderung berechnet.

Bestimmung der Kondensationswärme von Wasser

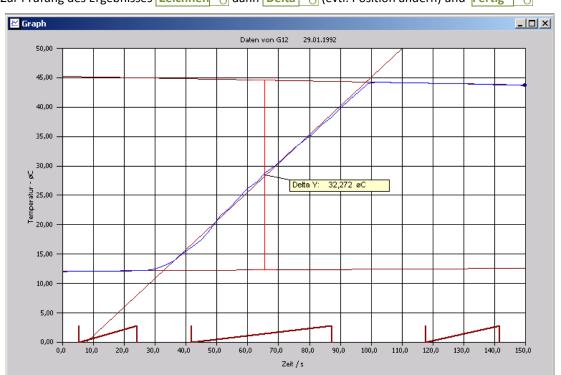
Durch-

führung

- Erst wenn man der Überzeugung ist, dass der Wasserdampf im U-Rohr nicht mehr kondensiert, dann Aufzeichnen oder mit der 's'-Taste die Messwertspeicherung starten.
- Die Apparatur (vorsichtig) so umändern, dass der Wasserdampf in das auf dem Rührer stehende Kalorimeter geleitet wird.
- Das warme Wasser in den Styroporbecher gießen, das Becherglas zurückwiegen und die Massendifferenz in die Tabelle (m_{WW}) eintragen (Vorzeichen nicht beachten).
- Nach ca. 120 s Messung beenden of drücken.
- Projektnamen eingeben (hier: Beispiel) Mein erstes Projekt und Akzeptieren
- Danach das U-Rohr wieder aus dem Kalorimeter entfernen, den Styroporbecher wiegen die Masse (m_{W2}) notieren

Messwerte zu Versuch G12	
Masse des Wassers m _W	g
Masse des gesamten Wassers m _{W2} :	g
Endtemperatur T _M	°C

Prinzip: Der Wasserdampf erhitzt mit seiner Kondensationswärme die Umgebung (Wasser und Kalorimeter) mit einer bestimmten Wärmemenge. Zusätzlich gibt der kondensierte Wasserdampf noch die Wärmemenge ab, die frei wird, wenn diese Wassermenge (m_{W2} - m_{W1}) sich von 100 °C auf die Endtemperatur(T_{M}) abkühlt.


$$Q = Q_W + Q_{Kal} - Q_E$$

$$Q = (c_W \cdot m_W + W_{Kal}) \cdot \Delta T_1 - c_W \cdot (m_{W2} - m_W) \cdot (100 \,^{\circ}C - T_M)$$

AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen

- Hauptmenü: 3-Geraden-Methode
- Folgen Sie den Anweisungen (mit 'Abhaken') 1. für die Vorperiode, 2. Hauptperiode und 3. Nachperiode
- Zur Prüfung des Ergebnisses Zeichnen dann Delta (evtl. Position ändern) und Fertig

Bestimmung der Kondensationswärme von Wasser

Berechnen der Kondensationswärme:

Für die Beispielrechnung werden folgende Werte verwendet: Masse des Wassers (m_W): 100 g,

Masse des kondensierten Wassers (m_{W2} - m_{W}) 5.6 g, Endtemperatur des Wassers (T_{M}): 44.8 °C

Wasserwert (W_{Kal}) 25.5 J·K⁻¹)

Spez. Wärmekapazität von Wasser c_W 4.187 J/g·K

Auswertung

Favoriten im Hauptmenü AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen

Rechner Termeingabe: (4,187*100 + 25,5)*32,27 - 4,187*5,6*(100 - 44,8)

Als Ergebnis liefert der Rechner pro m(Dampf) = 5.6 g: Q = $-13\,040 \text{ J}$

Die Umrechnung auf molare Bedingungen: $(M(H_2O) = 18,0 \text{ g/mol})$

$$\Delta H^0 = \Delta H \cdot \frac{M}{m}$$

Favoriten im Hauptmenü AK Analytik 11 Start Messung Favoriten Auswerten Hinzufügen

Rechner Termeingabe: -12945/5.6 * 18) =

Als Ergebnis liefert der Rechner: $\Delta H = -41914 \text{ J/mol} = 41,9 \text{ kJ/mol}$

Literaturwert: $\Delta H_{(v)} = -41 \text{ kJ} \cdot \text{mol}^{-1}$

Beachten:

Entsorgung

???

Literatur

K. Dehnert et. al., Allgemeine Chemie, Schroedel-Verlag, Hannover, 1987

F. Kappenberg, Computer im Chemieunterricht 1988, S. 151, Verlag Dr. Flad, Stuttgart