
Bestimmung des Wasserwertes eines Kalorimeters

Prinzip

Die Temperaturänderung beim Zusammengeben zweier Wassermengen mit unterschiedlicher Temperatur wird gemessen und so der "Wasserwert", ein Kalibrierwert für das Kalorimeter, ermittelt.

Bestimmung des Wasserwertes eines Kalorimeters

3 01

Durch-

- Mit Aufzeichnung starten die Messwertspeicherung starten.
- Das Becherglas mit dem warmen Wasser auf die Waage stellen, austarieren, die Temperatur des warmen Wassers mit dem zweiten Fühler des "ALL-CHEM-MISST" (T2) messen und (T_{WW}) notieren.
- Das warme Wasser in den Styroporbecher gießen, das Becherglas zurückwiegen und die Massendifferenz in die Tabelle (m_{WW}) eintragen (Vorzeichen nicht beachten).
- Nach ca. 140 s Stoppen drücken.

Masse (kaltes Wasser) m _{kW}	g	Temperatur (warmes Wasser) T _{WW}	°C
Masse (warmes Wasser) m _{WW}	g	Mischungstemperatur T _M	°C

Speichern

führung

- Icon oben links 🔊 und <mark>Speichern unter</mark> wählen
- Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) G01 User und OK

Excel-Export

- lcon oben links und Datenreihen exportieren wählen
 Unter ,Datenreihen Speichern′ Projekt ☑ G01 User auswählen und Speichern
- Je nach Gerät mit "Speichern unter' noch Pfad aussuchen und bestätigen

Öffnen bei Bedarf

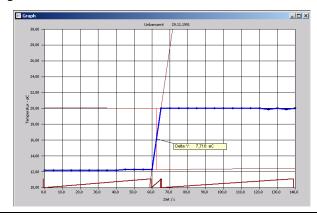
- Ist der Teacher's Helper nicht mehr zu erreichen: Browser z.B. Firefox/Safari aufrufen, in die Adresszeile (URL-Zeile) nicht in der Google-Suchzeile! | http://labor.ak eingeben. -
- lcon oben links und Laden "Projekt Laden" G01 User direkt auswählen und →anklicken

Bestimmung der Temperaturdifferenz

Unter dem Wasserwert verstand man früher die Menge Wasser, die die gleiche Wärmemenge aufnehmen würde wie die Kalorimeterteile und die sie umgebende Luft. Inzwischen hat sich eingebürgert, die Wärmekapazität des Kalorimeters (Kalorimeterwert) als Wasserwert zu bezeichnen.

Das "warme" Wasser gibt eine bestimmte Wärmemenge an das kältere Wasser und an das Kalorimeter (Gefäß, Thermofühler, Magnetrührer etc.) ab. Dadurch erhöht sich deren Temperatur um ΔT_1

$$Q_{WW} = Q_{kW} + Q_{Kal}$$


$$c_{W} \cdot m_{wW} \cdot (T_{wW} - T_{M}) = c_{W} \cdot m_{kW} \cdot \Delta T_{1} + W_{Kal} \cdot \Delta T_{1}$$

$$W_{Kal} = c_{W} \cdot m_{wW} \cdot \frac{T_{wW} - T_{M}}{\Delta T_{1}} - c_{W} \cdot m_{kW}$$
(1)

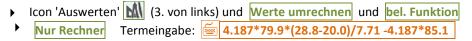
Falls die Temperaturunterschiede nicht zu groß sind und die Mischungstemperatur sich im Bereich der Raumtemperatur bewegt, kann man evtl. schon aus der Tabelle die Temperaturdifferenz ΔT_1 ablesen und auf eine Gangbetrachtung verzichten. Hier erfolgt die Bestimmung der Temperaturdifferenz nach der Drei-Geraden- Methode.

- Icon 'Auswerten' (3. von links) Drei-Geraden-Methode
- Folgen Sie den Anweisungen (mit 'Abhaken') 1. für die Vorperiode, 2. Hauptperiode und 3. Nachperiode
- Dann auf Berechnen tippen. Die Temperaturdifferenz wird als Delta angegeben.
- Evtl. die Position des Ergebniskästchens ändern.

Auswertung

Bestimmung des Wasserwertes eines Kalorimeters

Berechnung des Wasserwertes


Die Berechnung erfolgt nach Gleichung (1)

$$W_{Kal} = c_W \cdot m_{wW} \cdot \frac{T_{wW} - T_M}{\Delta T_1} - c_W \cdot m_{kW}$$

Auswertung

Für die Beispielrechnung werden folgende Werte verwendet:

Spezifische Wärmekapazität von Wasser: 4,185 J/g · K c_{W} Masse des kalten Wassers: 85.1 g m_{kW} Masse des warmen Wassers: 79.9 g m_{WW} Ausgangstemperatur des warmen Wassers: T_{WW} 28.8 °C 20.0 °C Mischungstemperatur: T_M Temperaturdifferenz: ΔT_1 7.71 °C

Die Wärmeaufnahme durch das Kalorimeter ist also im Vergleich zur Wärmeaufnahme durch das kalte Wasser $(4.187 \text{ J/g} \cdot \text{K}) \cdot 85.1 \text{ g} = 356 \text{ J/K}$ mit etwa 7% relativ gering.

In der Literatur findet man Wasserwerte für "Styroporkalorimeter" von etwa 20 J/K - 50 J/K; für große Glaskalorimeter von etwa 100 J/K - 900 J/K

Tipps

- Falls man in ein und demselben Kalorimeter mit verschiedenen Mengen bzw. Geräten (z.B.: Reagenzgläsern) arbeitet, ist es sinnvoll, für die entsprechende Konstellation einen Wasserwert zu bestimmen.
- Das gleiche gilt für Reaktionen, die sehr langsam ablaufen oder bei denen eine recht große Temperaturdifferenz zu erwarten ist.
- Für die meisten kalorimetrischen Messungen ist ein kräftiger "Rührfisch" wegen der besseren Durchmischung günstig, obwohl ein solcher etwas mehr Wärme aufnimmt.
- Lassen Sie nach Einfüllen des kalten Wassers dem Styroporbecher und dem Rührmagneten genügend Zeit, sich ebenfalls abzukühlen.

Beachten:	0	Entsorgung	entfällt

Literatur F. Kappenberg, Computer im Chemieunterricht 1988, S. 150, Verlag Dr. Flad, Stuttgart