


Bestimmung der Kondensationswärme von Wasser

Prinzip

Wasserdampf wird in das Kalorimeter geleitet, die entsprechende Temperaturerhöhung gemessen und die zugehörige Enthalpieänderung berechnet.

Bestimmung der Kondensationswärme von Wasser

Vorbereitung an den Tablets / Laptops (Clients)

- Am Tablet / Laptop / Smartphone Einstellungen oder mit wlan eine Verbindung herstellen: ak.net anwählen und warten bis die Verbindung eingebucht ist.
- Browser z.B. Firefox/Safari aufrufen, in die Adresszeile/URL-Zeile (nicht in die Google-Suchzeile!) http://labor.ak eingeben. Es erscheinen 4 Bildschirme...
- AK MiniAnalytik wählen. Im erscheinenden Bild können die Menüicons neben- oder (bei kleinen Bildschirmen) untereinander angeordnet sein.
- Icon 'Messen' (2. Von links) und Mit Messgerät verbinden auswählen.
- Messgrößen-Auswahl:

 ☐ Temp. 1 (T1)
- T1 Max 50,00 °C Konfiguration-Methode: Y-Achse T1 Min € 0,00 °C T1 Nachkomma 🚋 2 Linien 🔽 ja
- X-Achse: Zeit
- X-Achse Zeit Intervall 2,0 s Zeit Max 🚋 150,0 s Zeit Nachkomma 🔤 1 ОК
- Der Messbildschirm wird aufgebaut und Werte angezeigt.

Erst wenn man der Überzeugung ist, dass der Wasserdampf im U-Rohr nicht mehr kondensiert, dann mit Aufzeichnung starten die Messwertspeicherung starten.

- Die Apparatur (vorsichtig) so umändern, dass der Wasserdampf in das auf dem Rührer stehende Kalorimeter geleitet wird.
- Das warme Wasser in den Styroporbecher gießen, das Becherglas zurückwiegen und die Massendifferenz in die Tabelle ($m_{\mbox{\scriptsize WW}}$) eintragen (Vorzeichen nicht beachten).
- Nach ca. 120 s Stoppen drücken. **Durch-**
 - Danach das U-Rohr wieder aus dem Kalorimeter entfernen, den Styroporbecher wiegen die Masse (m_{W/2}) notieren

Messwerte zu Versuch G12	
Masse des Wassers m _W	g
Masse des gesamten Wassers m _{W2} :	g
Endtemperatur T _M	°C

Icon oben links und Speichern unter wählen Speichern Unter ,Projekt Speichern' Projektnamen eingeben (hier: Beispiel) G12 User und OK

Icon oben links und Datenreihen exportieren wählen Excel-Unter ,Datenreihen Speichern' Projekt G12 User auswählen und Speichern **Export** Je nach Gerät mit "Speichern unter' noch Pfad aussuchen und bestätigen

Ist der Teacher's Helper nicht mehr zu erreichen: Browser z.B. Firefox/Safari aufrufen, in die Adresszeile Öffnen (URL-Zeile) - nicht in der Google-Suchzeile! mhttp://labor.ak eingeben. bei Icon oben links 🔼 und Laden "Projekt Laden" G12 User direkt auswählen und →anklicken

www.kappenberg.com Materialien Versuche zur Thermometrie 10/2011

Bedarf

führung

Bestimmung der Kondensationswärme von Wasser


Prinzip: Der Wasserdampf erhitzt mit seiner Kondensationswärme die Umgebung (Wasser und Kalorimeter) mit einer bestimmten Wärmemenge. Zusätzlich gibt der kondensierte Wasserdampf noch die Wärmemenge ab, die frei wird, wenn diese Wassermenge (m_{W2} - m_{W1}) sich von 100 °C auf die Endtemperatur(T_{M}) abkühlt.

$$Q = Q_W + Q_{Kal} - Q_E$$

$$Q = (c_W \cdot m_W + W_{Kal}) \cdot \Delta T_1 - c_W \cdot (m_{W2} - m_W) \cdot (100 \,^{\circ}C - T_M)$$

- Icon 'Auswerten' (3. von links) Drei-Geraden-Methode
- Folgen Sie den Anweisungen (mit 'Abhaken') 1. für die Vorperiode, 2. Hauptperiode und 3. Nachperiode
- Dann auf Berechnen tippen. Die Temperaturdifferenz wird als Delta angegeben.
- Fvtl. die Position des Ergebniskästchens ändern.

Auswertung

Berechnen der Kondensationswärme:

Für die Beispielrechnung werden folgende Werte verwendet:

Masse des Wassers (m_W): 100 g,

Masse des kondensierten Wassers (m_{W2} - m_W) 5.6 g, 44.8 °C Endtemperatur des Wassers (T_M):

25.5 J·K⁻¹) Wasserwert (WKal)

Spez. Wärmekapazität von Wasser c_W 4.187 J/g·K

Auswertung

Icon 'Auswerten' (3. von links) und Werte umrechnen und bel. Funktion Nur Rechner Termeingabe: (4,187*100 + 25,5)*32,27 - 4,187*5,6*(100 - 44,8)

Als Ergebnis liefert der Rechner pro m(Dampf) = 5,6 g:

$$Q = -13040 J$$

Die Umrechnung auf molare Bedingungen: $(M(H_2O) = 18.0 \text{ g/mol})$

$$\Delta H^0 = \Delta H \cdot \frac{M}{m}$$

Bestimmung der Kondensationswärme von Wasser

Icon 'Auswerten' (3. von links) und Werte umrechnen und bel. Funktion

Nur Rechner Termeingabe: -12945/5.6 * 18)

ОК

Als Ergebnis liefert der Rechner: $\Delta H = -41 \, 914 \, \text{J/mol} = 41,9 \, \text{kJ/mol}$

 $\Delta H_{(v)} = -41 \text{ kJ} \cdot \text{mol}^{-1}$ Literaturwert:

Beachten: ??? **Entsorgung**

K. Dehnert et. al., Allgemeine Chemie, Schroedel-Verlag, Hannover, 1987

F. Kappenberg, Computer im Chemieunterricht 1988, S. 151, Verlag Dr. Flad, Stuttgart