Elemente - Namen und Symbole

Aluminium	Al	Calcium	Ca	Kohlenstoff	C	Phosphor	Р	Stickstoff	N
Argon	Ar	Chlor	a	Krypton	Kr	Platin	Pt	Strontium	Sr
Arsen	45	Chrom	Cr	Kupfer	au	Plutonium	Pu	Titan	Ti
Barium	Ва	Eisen	Fe	Lithium	Li	Quecksilber	H9	Uran	U
Beryllium	Be	Fluor	F	Magnesium	Mg	Radium	Ra	Vanadium	V
Blei	Pb	Gold	Au	Mangan	Mh	Rubidium	Rb	Wasses toll	Н
Bor	B	Helium	He	Natrium	Na	Sauers toff	0	Wolfram	W
Brom	Br	Iod	J	Neon	Ne	Schwefel	5	Xenon	Xe
Cadmium	Col	Kalium	K	Nickel	Ni	Silber	Ag	Zink	Zn
Caesium	Cs	Kobalt	60	Palladium	Pd	Silicium	Si	Zinn	Sn

In der Natur als zweiatomige Moleküle vorkommende Eelmente: H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂

Griechische Zahl-(Vor-)silben

1	(mono)*	5	penta	9	nona	13	trédeca	19	nonadeca
2	di	6	hexa	10	deca	14	tetradeca	20	eicosa
3	tri	7	hepta	11	undeca	16	hexadeca	21	heneicosa
4	tetra	8	octa	12	dodeca	17	heptadeca	22	docosa

^{*)} wird meist weggelassen. Häufig fällt der letzte Vokal (a) weg, wenn das nachfolgende Wort mit einem Vokal beginnt.

Chemische und physikalische Größen

Größe	Symbol	Einheit	Bemerkungen / Bedingungen
Masse	m	g	
	٧	$1L (= 1dm^3)$	-
Teilchenzahl	NA		= 6.023 . 10 ²³ "Stück" (Avogadro-Zahl).
	n(X)	mol	Anzahl der Teilchen der Sorte X geteilt durch NA.
molare Masse	M	g mol	= ist die Masse von N _A -Teilchen der Sorte X. Bei Molekülen ist die
	71	moi	Molmasse die Summe der Molmassen der im Molekül vorkomrnen Atome.
			(Vorher mit der Häufigkeit multiplizieren!)
molares	V _M	L	= Volumen, das N _A -Teilchen bei Normalbedingungen einnehmen (<u>22,4 L</u>)
molares Volumen (Molsolumen)	bzw. V ₀	mol	unabhängig von der Teilchenart z.B. unabhängig von der Teilchengröße.
(Molcolumen)			Faustregel: Bei Raumbedingungen beträgt V _M etwa 24,2 L)

Normalbedingungen:	Druck : $p_0 = 1013 \text{ hPa}$	Temperatur. T ₀ = 273,15 K (enspricht 0°C)
Raumbedingungen:	Druck : $p_0 = 1013 \text{ hPa}$	Temperatur. T ₀ = 298,15 K (enspricht 25°C)

Stoffmenge = Mane molare Mane	$n = \frac{m}{M}$	
Stoffmenge = Volumen Molvolumen	$n = \frac{V}{VM}$	besser: $n = \frac{V \cdot F}{V_M}$ *)
Stoffmenge = Volumen · Konzentration	$n = c \cdot V$	